Skip to main content

Lentiviral Vector-Mediated Gene Transfer and RNA Silencing Technology in Neuronal Dysfunctions

  • Protocol
  • First Online:
Book cover Lentivirus Gene Engineering Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 614))

Abstract

Lentiviral-mediated gene transfer in vivo or in cultured mammalian neurons can be used to address a wide variety of biological questions, to design animal models for specific neurodegenerative pathologies, or to test potential therapeutic approaches in a variety of brain disorders. Lentiviruses can infect nondividing cells, thereby allowing stable gene transfer in postmitotic cells such as mature neurons. An important contribution has been the use of inducible vectors: the same animal can thus be used repeatedly in the doxycycline-on or -off state, providing a powerful mean for assessing the function of a gene candidate in a disorder within a specific neuronal circuit. Furthermore, lentivirus vectors provide a unique tool to integrate siRNA expression constructs with the aim to locally knockdown expression of a specific gene, enabling to assess the function of a gene in a very specific neuronal pathway. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in the brain. Therefore, the use of lentiviruses for stable expression of siRNA in brain is a powerful aid to probe gene functions in vivo and for gene therapy of diseases of the central nervous system. In this chapter, I review the applications of lentivirus-mediated gene transfer in the investigation of specific gene candidates involved in major brain disorders and neurodegenerative processes. Major applications have been in polyglutamine disorders, such as synucleinopathies and Parkinson’s disease, or in investigating gene function in Huntington’s disease, dystonia, or muscular dystrophy. Recently, lentivirus gene transfer has been an invaluable tool for evaluation of gene function in behavioral disorders such as drug addiction and attention-deficit hyperactivity disorder or in learning and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebischer, P., and Ridet, J. L. (2001) Recombinant proteins for neurodegenerative diseases: the delivery issue. Trends Neurosci 24, 533-40.

    PubMed  CAS  Google Scholar 

  2. Zhao, C., Strappe, P. M., Lever, A. M. L., and Franklin, R. J. M. (2003) Lentiviral vectors for gene delivery to normal and demyelinated white matter. Glia 42, 59-67.

    PubMed  Google Scholar 

  3. Bensadoun, J. C., Deglon, N., Tseng, J. L., Ridet, J. L., Zurn, A. D., and Aebischer, P. (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol 164, 15-24.

    PubMed  CAS  Google Scholar 

  4. Janas, J., Skowronski, J., Van Aelst, L. (2006) Lentiviral delivery of RNAi in hippocampal neurons. Methods Enzymol 406, 593-605.

    PubMed  CAS  Google Scholar 

  5. Gascón, S., Paez-Gomez, J. A., Díaz-Guerra, M., Scheiffele, P., and Scholl, F. G. (2008) Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons. J Neurosci Methods 168, 104-12.

    PubMed  Google Scholar 

  6. Dillon, A. K., Fujita, S. C., Matise, M. P., Jarjour, A. A., Kennedy, T. E., Kollmus, H., Arnold, H. H., Weiner, J. A., Sanes, J. R., Kaprielian, Z. (2005) Molecular control of spinal accessory motor neuron/axon development in the mouse spinal cord. J Neurosci 25, 10119-30.

    PubMed  CAS  Google Scholar 

  7. Dykxhoorn, D. M., Novina, C. D., Sharp, P. A. (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457-67.

    PubMed  CAS  Google Scholar 

  8. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15, 188-200.

    PubMed  CAS  Google Scholar 

  9. Hannon, G. J., and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature 431, 371-8.

    PubMed  CAS  Google Scholar 

  10. Scherr, M., Battmer, K., Ganser, A., and Eder, M. (2003) Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA. Cell Cycle 2, 251-7.

    PubMed  CAS  Google Scholar 

  11. Buckingham, S. D., Esmaeili, B., Wood, M., and Sattelle, D. B. (2004) RNA interference: from model organisms towards therapy for neural and neuromuscular disorders. Hum Mol Genet 13, 275-288.

    Google Scholar 

  12. Van den Haute, C., Eggermont, K., Nuttin, B., Debyser, Z., and Baekelandt, V. (2003) Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain. Hum Gene Ther 14, 1799-807.

    PubMed  Google Scholar 

  13. Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., Sievers, C., Yang, L., Kopinja, J., Rooney, D. L., Ihrig, M. M., McManus, M. T., Gertler, F. B. Scott, M. L., Van Parijs, L. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33, 401-6.

    PubMed  CAS  Google Scholar 

  14. Stewart, S. A., Dykxhoorn, D. M., Palliser, D., Mizuno, H., Yu, E. Y., An, D. S., Sabatini, D. M., Chen, I. S., Hahn, W. C., Sharp, P. A., Weinberg, R. A., and Novina, C. D. (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493-501.

    PubMed  CAS  Google Scholar 

  15. Ventura, A., Meissner, A., Dillon, C. P., McManus, M., Sharp, P. A., Van Parijs, L., Jaenisch, R., and Jacks, T. (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci U S A 101, 10380-5.

    PubMed  CAS  Google Scholar 

  16. Kunath, T., Gish, G., Lickert, H., Jones, N., Pawson, T., and Rossant, J. (2003) Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat Biotechnol 21, 559-61.

    PubMed  CAS  Google Scholar 

  17. Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J., and Rosenquist, T. A. (2003) Germline transmission of RNAi in mice. Nat Struct Biol 10, 91-5.

    PubMed  CAS  Google Scholar 

  18. Tiscornia, G., Tergaonkar, V., Galimi, F., Verma, I. M. (2004) CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proc Natl Acad Sci U S A 101, 7347-51.

    PubMed  CAS  Google Scholar 

  19. Szulc, J., and Aebischer, P. (2008) Conditional gene expression and knockdown using lentivirus vectors encoding shRNA. Methods Mol Biol 434, 291-309.

    PubMed  CAS  Google Scholar 

  20. Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., and Weinshenker, B. G. (2000) Multiple sclerosis. N Engl J Med 343, 938-52.

    PubMed  CAS  Google Scholar 

  21. Compston, A., and Coles, A. (2002) Multiple sclerosis. Lancet 359, 1221-31.

    PubMed  Google Scholar 

  22. Debouverie, M., Pittion-Vouyovitch, S., Louis, S., and Guillemin, F. (2008) Natural history of multiple sclerosis in a population-based cohort. Eur J Neurol 15, 916-21.

    PubMed  CAS  Google Scholar 

  23. Rosati, G. (2001) The prevalence of multiple sclerosis in the world: an update. Neurol Sci 22, 117-39.

    PubMed  CAS  Google Scholar 

  24. Ascherio, A., and Munger, K. L. (2007) Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 61, 288-99.

    PubMed  Google Scholar 

  25. Kornek, B., and Lassmann, H. (2003) Neuropathology of multiple sclerosis - new concepts. Brain Res Bull 61, 321-26.

    PubMed  CAS  Google Scholar 

  26. Svejgaard, A. (2008) The immunogenetics of multiple sclerosis. Immunogenetics 60, 275-86.

    PubMed  CAS  Google Scholar 

  27. International Multiple Sclerosis Genetics Consortium, Hafler, D. A., Compston, A., Sawcer, S., Lander, E. S., Daly, M. J., De Jager, P. L., de Bakker, P. I., Gabriel, S. B., Mirel, D. B., Ivinson, A. J., Pericak-Vance, M. A., Gregory, S. G., Rioux, J. D., McCauley, J. L., Haines, J. L., Barcellos, L. F., Cree, B., Oksenberg, J. R., and Hauser, S. L. (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357, 851-62.

    PubMed  CAS  Google Scholar 

  28. Weber, F., Fontaine, B., Cournu-Rebeix, I., Kroner, A., Knop, M., Lutz, S., Müller-Sarnowski, F., Uhr, M., Bettecken, T., Kohli, M., Ripke, S., Ising, M., Rieckmann, P., Brassat, D., Semana, G., Babron, M. C., Mrejen, S., Gout, C., Lyon-Caen, O., Yaouanq, J., Edan, G., Clanet, M., Holsboer, F., Clerget-Darpoux, F., and Müller-Myhsok, B. (2008) IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations. Genes Immun 9, 259-63.

    PubMed  CAS  Google Scholar 

  29. Anaya, J. M., Gómez, L., and Castiblanco, J. (2006) Is there a common genetic basis for autoimmune diseases? Clin Dev Immunol 13, 185-95.

    PubMed  CAS  Google Scholar 

  30. Spolski, R., Kashyap, M., Robinson, C., Yu, Z., and Leonard, W. J. (2008) IL-21 signaling is critical for the development of type I diabetes in the NOD mouse. Proc Natl Acad Sci U S A 105, 14028-33.

    PubMed  CAS  Google Scholar 

  31. Palacios, R., Aguirrezabal, I., Fernandez-Diez, B., Brieva, L., and Villoslada, P. (2005) Chromosome 5 and multiple sclerosis. J Neuroimmunol 167, 1-3.

    PubMed  CAS  Google Scholar 

  32. Richardson, J. H., Hofmann, W., Sodroski, J. G., and Marasco, W. A. (1998) Intrabody-mediated knockout of the high-affinity IL-2 receptor in primary human T cells using a bicistronic lentivirus vector. Gene Ther 5, 635-44.

    PubMed  CAS  Google Scholar 

  33. Gobin, S. J., Montagne, L., Van Zutphen, M., van der Valk, P., van den Elsen, P. J., and De Groot, C. J. (2001) Upregulation of transcription factors controlling MHC expression in multiple sclerosis lesions. Glia 36, 68-77.

    PubMed  CAS  Google Scholar 

  34. Frisullo, G., Mirabella, M., Angelucci, F., Caggiula, M., Morosetti, R., Sancricca, C., Patanella, A. K., Nociti, V., Iorio, R., Bianco, A., Tomassini, V., Pozzilli, C., Tonali, P. A., Matarese, G., and Batocchi, A. P. (2006) pSTAT1, pSTAT3, and T-bet expression in peripheral blood mononuclear cells from relapsing-remitting multiple sclerosis patients correlates with disease activity. J Neurosci Res 84, 1027-36.

    PubMed  CAS  Google Scholar 

  35. Cannella, B., and Raine, C. S. (2004) Multiple sclerosis: cytokine receptors on oligodendrocytes predict innate regulation. Ann Neurol 55, 46-57.

    PubMed  CAS  Google Scholar 

  36. David, M., Romero, G., Zhang, Z. Y., Dixon, J. E., and Larner, A. C. (1993) In vitro activation of the transcription factor ISGF3 by interferon alpha involves a membrane-associated tyrosine phosphatase and tyrosine kinase. J Biol Chem 268, 6593-9.

    PubMed  CAS  Google Scholar 

  37. Jiao, H., Berrada, K., Yang, W., Tabrizi, M., Platanias, L. C., and Yi, T. (1996) Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol 16, 6985-92.

    PubMed  CAS  Google Scholar 

  38. Frank, C., Burkhardt, C., Imhof, D., Ringel, J., Zschörnig, O., Wieligmann, K., Zacharias, M., and Böhmer, F. D. (2004) Effective dephosphorylation of Src substrates by SHP-1. J Biol Chem 279, 11375-83.

    PubMed  CAS  Google Scholar 

  39. Massa, P. T., and Wu, C. (1996) The role of protein tyrosine phosphatase SHP-1 in the regulation of IFN-gamma signaling in neural cells. J Immunol 157, 5139-44.

    PubMed  CAS  Google Scholar 

  40. Massa, P. T., Saha, S., Wu, C., and Jarosinski, K. W. (2000) Expression and function of the protein tyrosine phosphatase SHP-1 in oligodendrocytes. Glia 29, 376-85.

    PubMed  CAS  Google Scholar 

  41. Massa, P. T., Wu, C., and Fecenko-Tacka, K. (2004) Dysmyelination and reduced myelin basic protein gene expression by oligodendrocytes of SHP-1-deficient mice. J Neurosci Res 77, 15-25.

    PubMed  CAS  Google Scholar 

  42. Christophil, G. P., Hudson, C. A., Gruber, R. C., Christophil, C. P., Mihai, C., Mejico, L. J., Jubelt, B., and Massa, P. T. (2008) SHP-1 deficiency and increased inflammatory gene expression in PBMCs of multiple sclerosis patients. Lab Invest 88, 243-55.

    Google Scholar 

  43. Wrzesinski, S., Séguin, R., Liu, Y., Domville, S., Planelles, V., Massa, P., Barker, E., Antel, J., and Feuer, G. (2000) HTLV type 1 Tax transduction in microglial cells and astrocytes by lentiviral vectors. AIDS Res Hum Retroviruses 16, 1771-6.

    PubMed  CAS  Google Scholar 

  44. Fahn, S., Bressman, S. B., and Marsden, C. D. (1998) Classification of dystonia. Adv Neurol 78, 1-10.

    PubMed  CAS  Google Scholar 

  45. Ozelius, L. J., Hewett, J. W., Page, C. E., Bressman, S. B., Kramer, P. L., Shalish, C., de Leon, D., Brin, M. F., Raymond, D., Corey, D. P., Fahn, S., Risch, N. J., Buckler, A. J., Gusella, J. F., and Breakefield, X. O. (1997) The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 17, 40-8.

    PubMed  CAS  Google Scholar 

  46. Hanson, P. I., and Whiteheart, S. W. (2005) AAA proteins: have engone, will work. Nat Rev Mol Cell Biol 6, 519-52.

    PubMed  CAS  Google Scholar 

  47. Hewett, J. W., Nery, F. C., Niland, B., Ge, P., Tan, P., Hadwiger, P., Tannous, B. A., Sah, D. W., and Breakefield, X. O. (2008) siRNA knockdown of mutant torsinA restores processing through secretory pathway in DYT1 dystonia cells. Hum Mol Genet 17, 1436-45.

    PubMed  CAS  Google Scholar 

  48. Kustedjo, K., Bracey, M. H. and Cravatt, B. F. (2000) Torsin A and its torsion dystonia-associated mutant forms are lumenal glycoproteins that exhibit distinct subcellular localizations. J Biol Chem 275, 27933-9.

    PubMed  CAS  Google Scholar 

  49. Gonzalez-Alegre, P., and Paulson, H. L. (2004) Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci 24, 2593-601.

    PubMed  CAS  Google Scholar 

  50. Goodchild, R. E. and Dauer, W. T. (2004) Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc Natl Acad Sci U S A 101, 847-52.

    PubMed  CAS  Google Scholar 

  51. Naismith, T. V., Heuser, J. E., Breakefield, X. O., and Hanson, P. I. (2004) TorsinA in the nuclear envelope. Proc Natl Acad Sci U S A 101, 7612-7.

    PubMed  CAS  Google Scholar 

  52. Bragg, D. C., Camp, S. M., Kaufman, C. A., Wilbur, J. D., Boston, H., Schuback, D. E., Hanson, P. I., Sena-Esteves, M., and Breakefield, X. O. (2004) Perinuclear biogenesis of mutant torsin-A inclusions in cultured cells infected with tetracycline-regulated herpes simplex virus type 1 amplicon vectors. Neuroscience 125, 651-6.

    PubMed  CAS  Google Scholar 

  53. Gonzalez-Alegre, P., Miller, V. M., Davidson, B. L., and Paulson, H. L. (2003) Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA. Ann Neurol 53, 781-7.

    PubMed  CAS  Google Scholar 

  54. Hewett, J., Gonzalez-Agosti, C., Slater, D., Ziefer, P., Li, S., Bergeron, D., Jacoby, D. J., Ozelius, L. J., Ramesh, V., and Breakefield, X. O. (2000) Mutant torsinA, responsible for early-onset torsion dystonia, forms membrane inclusions in cultured neural cells. Hum Mol Genet 9, 1403-13.

    PubMed  CAS  Google Scholar 

  55. Gonzalez-Alegre, P., Bode, N., Davidson, B. L., and Paulson, H. L. (2005) Silencing primary dystonia: lentiviral-mediated RNA interference therapy for dyt1 dystonia. J Neurosci 25, 10502-9.

    PubMed  CAS  Google Scholar 

  56. Kock, N., Allchorne, A. J., Sena-Esteves, M., Woolf, C. J., and Breakefield, X. O. (2006) RNAi blocks DYT1 mutant torsinA inclusions in neurons. Neurosci Lett 395, 201-5.

    PubMed  CAS  Google Scholar 

  57. Nollen, E. A., Garcia, S. M., van Haaften, G., Kim, S., Chavez, A., Morimoto, R. I., and Plasterk, R. H. (2004) Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A 101, 6403-8.

    PubMed  CAS  Google Scholar 

  58. Lieberman, A. P., and Fischbeck, K. H. (2000) Triplet repeat expansion in neuromuscular disease. Muscle Nerve 23, 843-50.

    PubMed  CAS  Google Scholar 

  59. Caplen, N. J., Taylor, J. P., Statha, V. S., Tanaka, F., Fire, A., and Morgan, R. A. (2002) Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum Mol Genet 11, 175-84.

    PubMed  CAS  Google Scholar 

  60. Xia, H., Mao, Q., Eliason, S. L., Harper, S. Q., Martins, I. H., Orr, H. T., Paulson, H. L., Yang, L., Katin, R. M., and Davidson, B. L. (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10, 816-20.

    PubMed  CAS  Google Scholar 

  61. Alves, S., Régulier, E., Nascimento-Ferreira, I., Hassig, R., Dufour, N., Koeppen, A., Carvalho, A. L., Simões, S., de Lima, M. C., Brouillet, E., Gould, V. C., Déglon, N., and de Almeida, L. P. (2008) Striatal and nigral pathology in a lentiviral rat model of Machado-Joseph disease. Hum Mol Genet 17, 2071-83.

    PubMed  CAS  Google Scholar 

  62. Lavedan, C. (1998) The synuclein family. Genome Res 8, 871-80.

    PubMed  CAS  Google Scholar 

  63. Polymeropoulos, M., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., and Nussbaum, R. L. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045-7.

    PubMed  CAS  Google Scholar 

  64. LoBianco, C., Ridet, J. L., Schneider, B. L., Deglon, N., and Aebischer, P. (2002) alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Nat Acad Sc U S A 99, 10813-8.

    CAS  Google Scholar 

  65. Fountaine, T. M., and Wade-Martins, R. (2007) RNA interference-mediated knockdown of alpha-synuclein protects human dopaminergic neuroblastoma cells from MPP(+) toxicity and reduces dopamine transport. J Neurosci Res 85, 351-63.

    PubMed  CAS  Google Scholar 

  66. Sapru, M. K., Yates, J. W., Hogan, S., Jiang, L., Halter, J., and Bohn, M. C. (2006) Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp Neurol 198, 382-90.

    PubMed  CAS  Google Scholar 

  67. Peng, X. M., Tehranian, R., Dietrich, P., Stefanis, L., Perez, R. G. (2005) Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci 118, 3523-30.

    PubMed  CAS  Google Scholar 

  68. Perez, R. G., Waymire, J. C., Lin, E., Liu, J. J., Guo, F., Zigmond, M. J. (2002) A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22, 3090-9.

    PubMed  CAS  Google Scholar 

  69. Alerte, T. N. M., Akinfolarin, A. A., Friedrich, E. E., Mader, S. A., Hong, C. S., and Perez, R. G. (2008) alpha-Synuclein aggregation alters thyrosine hydroxylase phosphorylation and immunoreactivity: lessons from viral transduction of knockout mice. Neurosci Lett 435, 24-9.

    PubMed  CAS  Google Scholar 

  70. Kieburtz, K., McDonald, M., Shih, C., Feigin, A., Steinberg, K., Bordwell, K., Zimmerman, C., Srinidhi, J., Sotack, J., Gusella, J., et al. (1994) Trinucleotide repeat length and progression of illness in Huntington’s disease. J Med Genet 31, 872-4.

    PubMed  CAS  Google Scholar 

  71. Gusella, J. F., Wexler, N. S., Conneally, P. M., Naylor, S. L., Anderson, M. A., Tanzi, R. E., Watkins, P. C., Ottina, K., Wallace, M. R., and Sakaguchi, A. Y. et al. (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306, 234-8.

    PubMed  CAS  Google Scholar 

  72. Bates, G., Harper, P., and Jones, L. (2002) Huntington’s Disease, 3rd Edition. Oxford: Oxford University Press.

    Google Scholar 

  73. Imarisio, S., Carmichael, J., Korolchuk, V., Chen, C. W., Saiki, S., Rose, C., Krishna, G., Davies, J. E., Ttofi, E., Underwood, B. R., and Rubinsztein, D. (2008) Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 412, 191-209.

    PubMed  CAS  Google Scholar 

  74. Beal, M. F., and Ferrante, R. J. (2004) Experimental therapeutics in transgenic mouse models of Huntington’s disease. Nat Rev Neurosci 5, 373-84.

    PubMed  CAS  Google Scholar 

  75. Kirik, D., and Björklund, A. (2003) Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors. Trends Neurosci 26, 386-92.

    PubMed  CAS  Google Scholar 

  76. Ramaswamy, S., McBride, J. L., and Kordower, J. H. (2007) Animal models of Huntington’s disease. ILAR J 48, 356-73.

    PubMed  CAS  Google Scholar 

  77. Harper, S. Q., Staber, P. D., He, X., Eliason, S. L., Martins, I. H., Mao, Q., Yang, L., Kotin, R. M., Paulson, H. L., and Davidson, B. L. (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102, 5820-5.

    PubMed  CAS  Google Scholar 

  78. McBride, J. L., Boudreau, R. L., Harper, S. Q., Staber, P. D., Monteys, A. M., Martins, I., Gilmore, B. L., Burstein, H., Peluso, R. W., Polisky, B., Carter, B. J., and Davidson, B. L. (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 105, 5868-73.

    PubMed  CAS  Google Scholar 

  79. Zala, D., Bensadoun, J. C., Pereira de Almeida, L., Leavitt, B. R., Gutekunst, C. A., Aebischer, P., Hayden, M. R., and Déglon, N. (2004) Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington’s disease transgenic mice. Exp Neurol 185, 26-35.

    PubMed  CAS  Google Scholar 

  80. Zala, D., Benchoua, A., Brouillet, E., Perrin, V., Gaillard, M. C., Zurn, A. D., Aebischer, P., and Déglon, N. (2005) Progressive and selective striatal degeneration in primary neuronal cultures using lentiviral vector coding for a mutant huntingtin fragment. Neurobiol Dis 20, 785-98.

    PubMed  CAS  Google Scholar 

  81. Runne, H., Regulier, E., Kuhn, A., Zala, D., Gokce, O., Perrin, V., Sick, B., Aebischer, P., Deglon, N., and Luthi-Carter, R. (2008) Dysregulation of gene expression in primary neuron models of huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J Neurosci 28, 9723-31.

    PubMed  CAS  Google Scholar 

  82. deAlmeida, L. P., Ross, C. A., Zala, D., Aebischer, P., and Déglon, N. (2002) Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J Neurosci 22, 3473-83.

    Google Scholar 

  83. Régulier, E., Trottier, Y., Perrin, V., Aebischer, P., and Déglon, N. (2003) Early and reversible neuropathology induced by tetracycline-regulated lentiviral overexpression of mutant huntingtin in rat striatum. Hum Mol Genet 12, 2827-36.

    PubMed  Google Scholar 

  84. Perrin, V., Régulier, E., Abbas-Terki, T., Hassig, R., Brouillet, E., Aebischer, P., Luthi-Carter, R., and Déglon, N. (2007) Neuroprotection by Hsp104 and Hsp27 in lentiviral-based rat models of Huntington’s disease. Mol Ther 15, 903-11.

    PubMed  CAS  Google Scholar 

  85. Popovic, N., Maingay, M., Kirik, D., and Brundin, P. (2005) Lentiviral gene delivery of GDNF into the striatum of R6/2 Huntington mice fails to attenuate behavioral and neuropathological changes. Exp Neurol 193, 65-74.

    PubMed  CAS  Google Scholar 

  86. Benchoua, A., Trioulier, Y., Zala, D., Gaillard, M. C., Lefort, N., Dufour, N., Saudou, F., Elalouf, J. M., Hirsch, E., Hantraye, P., Déglon, N., and Brouillet, E. (2006) Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 17, 1652-63.

    PubMed  CAS  Google Scholar 

  87. Benchoua, A., Trioulier, Y., Diguet, E., Malgorn, C., Gaillard, M. C., Dufour, N., Elalouf, J. M., Krajewski, S., Hantraye, P., Deglon, N., and Brouillet, E. (2008) Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II. Hum Mol Genet 17, 1446-56.

    PubMed  CAS  Google Scholar 

  88. Charvin, D., Roze, E., Perrin, V., Deyts, C., Betuing, S., Pagès, C., Régulier, E., Luthi-Carter, R., Brouillet, E., Déglon, N., and Caboche, J. (2008) Haloperidol protects striatal neurons from dysfunction induced by mutated huntingtin in vivo. Neurobiol Dis 29, 22-9.

    PubMed  CAS  Google Scholar 

  89. Cui, L., Jeong, H., Borovecki, F., Parkhurst, C. N., Tanese, N., and Krainc, D. (2007) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127, 59-69.

    Google Scholar 

  90. Fukui, H., and Moraes, C. T. (2007) Extended polyglutamine repeats trigger a feedback loop involving the mitochondrial complex III, the proteasome and huntingtin aggregates. Hum Mol Genet 16, 783-97.

    PubMed  CAS  Google Scholar 

  91. Dass, B., and Kordower, J. H. (2007) Gene therapy approaches for the treatment of Parkinson’s disease. Handb Clin Neurol 84, 291-304.

    PubMed  Google Scholar 

  92. Déglon, N., Tseng, J. L., Bensadoun, J. C., Zurn, A. D., Arsenijevic, Y., deAlmeida, L., Zufferey, R., Trono, D., and Aebischer, P. (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson’s disease. Hum Gene Ther 11, 179-90.

    PubMed  Google Scholar 

  93. Dowd, E., Monville, C., Torres, E. M., Wong, L. F., Azzouz, M., Mazarakis, N. D., and Dunnett, S. B. (2005) Lentivector-mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism in a rat lesion model. Eur J Neurosci 22, 2587-95.

    PubMed  Google Scholar 

  94. Brizard, M., Carcenac, C., Bemelmans, A. P., Feuerstein, C., Mallet, J., and Savasta, M. (2006) Functional reinnervation from remaining DA terminals induced by GDNF lentivirus in a rat model of early Parkinson’s disease. Neurobiol Dis 21, 90-101.

    PubMed  CAS  Google Scholar 

  95. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Sokochi, M., Mizuno, Y., and Shimizu, N. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-8.

    PubMed  CAS  Google Scholar 

  96. Imai, Y., Soda, M., and Takahashi, R. (2000) Parkin suppresses unfolded protein stress induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 275, 35661-4.

    PubMed  CAS  Google Scholar 

  97. Doss-Pepe, E. W., Chen, L., and Madura, K. (2005) Alpha-synuclein and parkin contribute to the assembly of ubiquitin lysine 63-linked multiubiquitin chains. J Biol Chem 280, 16619-24.

    PubMed  CAS  Google Scholar 

  98. Lim, K. L., Chew, K. C., Tan, J. M., Wang, C., Chung, K. K., Zhang, Y., Tanaka, Y., Smith, W., Engelender, S., Ross, C. A., Dawson, V. L., and Dawson, T. M. (2005) Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci 25, 2002-9.

    PubMed  CAS  Google Scholar 

  99. Ulusoy, A., and Kirik, D. (2008) Can overexpression of parkin provide a novel strategy for neuroprotection in Parkinson’s disease? Exp Neurol 212, 258-60.

    PubMed  CAS  Google Scholar 

  100. LoBianco, C., Schneider, B. L., Bauer, M., Sajadi, A., Brice, A., Iwatsubo, T., and Aebischer, P. (2004) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc Nat Acad Sci U S A 101, 17510-5.

    CAS  Google Scholar 

  101. Ridet, J. L., Bensadoun, J. C., Déglon, N., Aebischer, P., and Zurn, A. D. (2006) Lentivirus-mediated expression of glutathione peroxidase: Neuroprotection in murine models of Parkinson’s disease. Neurobiol Dis 21, 29-34.

    PubMed  CAS  Google Scholar 

  102. Vergo, S., Johansen, J. L., Leist, M., and Lotharius, J. (2007) Vesicular monoamine transporter 2 regulates the sensitivity of rat dopaminergic neurons to disturbed cytosolic dopamine levels. Brain Res 1185, 18-32.

    PubMed  CAS  Google Scholar 

  103. Deierborg, T., Soulet, D., Roybon, L., Hall, V., and Brundin, P. (2008) Emerging restorative treatments for Parkinson’s disease. Prog Neurobiol 85, 407-32.

    PubMed  CAS  Google Scholar 

  104. Chao, C. C., and Lee, E. H. Y. (1999) Neuroprotective mechanism of glial cell line-derived neurotrophic factor on dopamine neurons: role of antioxidation. Neuropharmacology 38, 913-6.

    PubMed  CAS  Google Scholar 

  105. Kordower, J. H., Emborg, M. E., Bloch, J., Ma, S. Y., Chu, Y., Leventhal, L., McBride, J., Chen, E. Y., Palfi, S., Roitberg, B. Z., Brown, W. D., Holden, J. E., Pyzalski, R., Taylor, M. D., Carvey, P., Ling, Z., Trono, D., Hantraye, P., Deglon, N., and Aebischer, P. (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290, 767-73.

    PubMed  CAS  Google Scholar 

  106. Jakobsson, J., and Lundberg, C. (2006) Lentiviral vectors for use in the central nervous system. Mol Ther 13, 484-93.

    PubMed  CAS  Google Scholar 

  107. Bilang-Bleuel, A., Revah, F., Colin, P., Locquet, I., Robert, J. J., Mallet, J., and Horellou, P. (1997) Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc Natl Acad Sci U S A 94, 8818-23.

    PubMed  CAS  Google Scholar 

  108. Rosenblad, C., Gronborg, M., Hansen, C., Blom, N., Meyer, M., Johansen, J., Dago, L., Kirik, D., Patel, U. A., Lundberg, C., Trono, D., Bjorklund, A., and Johansen, T. E. (2000) In vivo protection of nigral dopamine neurons by lentiviral gene transfer of the novel GDNF-family member neublastin/artemin3. Mol Cell Neurosci 15, 199-214.

    PubMed  CAS  Google Scholar 

  109. Georgievska, B., Kirik, D., Rosenblad, C., Lundberg, C., and Bjorklund, A. (2002) Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. NeuroReport 13, 75-82.

    PubMed  CAS  Google Scholar 

  110. Azzouz, M., Ralph, S., Wong, L. F., Day, D., Askham, Z., Barber, R. D., Mitrophanous, K. A., Kingsman, S. M., and Mazarakis, N. D. (2004) Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. Neuroreport 15, 985-90.

    PubMed  CAS  Google Scholar 

  111. Palfi, S., Leventhal, L., Chu, Y., Ma, S. Y., Emborg, M., Bakay, R., Deglon, N., Hantraye, P., Aebischer, P., and Kordower, J. H. (2002) Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 22, 4942-54.

    PubMed  CAS  Google Scholar 

  112. Winkler, C., Sauer, H., Lee, C. S., and Bjorklund, A. (1996) Short-term GDNF treatment provides long-term rescue of lesioned nigral dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 16, 7206-15.

    PubMed  CAS  Google Scholar 

  113. Bjorklund, A., Kirik, D., Rosenblad, C., Georgievska, B., Lundberg, C., and Mandel, R. J. (2000) Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 886, 82-98.

    PubMed  CAS  Google Scholar 

  114. Choi-Lundberg, D. L., Lin, Q., Schallert, T., Crippens. D., Davidson, B. L., Chang, Y. N., Chiang, Y. L., Qian, J., Bardwaj, L., and Bohn, M. C.(1998) Behavioral and cellular protection of rat dopaminergic neurons by an adenoviral vector encoding glial cell line-derived neurotrophic factor. Exp Neurol 154, 261-75.

    PubMed  CAS  Google Scholar 

  115. LoBianco, C., Déglon, N., Pralong, W., and Aebischer, P. (2004) Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson’s disease. Neurobiol Dis 17, 283-9.

    CAS  Google Scholar 

  116. Capowski, E. E., Schneider, N. L., Ebert, A. D., Seehus, C. R., Szulc, J., Zufferey, R., Aebischer, P., and Svendsen, C. N. (2007) Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy. J Neurosci Methods 163, 338-49.

    PubMed  CAS  Google Scholar 

  117. Ebert, A. D., Beres, A. J., Barber, A. E., and Svendsen, C. N. (2008) Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp Neurol 209, 213-23.

    PubMed  CAS  Google Scholar 

  118. Caplen, A. (2000) Gene therapy for neurodegeneration. Trends Mol Med 7, 51-5.

    Google Scholar 

  119. Takasugi, N., Takahashi, Y., Morohashi, Y., Tomita, T., and Iwatsubo, T. (2002) The mechanism of gamma-secretase activities through high molecular weight complex formation of presenilins is conserved in Drosophila melanogaster and mammals. J Biol Chem 277, 50198-205.

    PubMed  CAS  Google Scholar 

  120. Kao, S. C., Krichevsky, A. M., Kosik, K. S., and Tsai, L. H. (2004) BACE1 suppression by RNA interference in primary cortical neurons. J Biol Chem 279, 1942-9.

    PubMed  CAS  Google Scholar 

  121. Vassar, R. (2004) BACE 1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 23, 105-14.

    PubMed  CAS  Google Scholar 

  122. Burton, A. (2005) RNA inhibition of beta-secretase reverts AD in mice. Lancet Neurol 4, 698.

    PubMed  Google Scholar 

  123. Sierant, M., Kubiak, K., Kazmierczak-Baranska, J., Paduszynska, A., Kuwabara, T., Warashina, M., Nacmias, B., Sorbi, S., and Nawrot, B. (2008) RNA interference in silencing of genes of Alzheimer’s disease in cellular and rat brain models. Nucleic Acids Symp Ser (Oxf) 52, 41-2.

    CAS  Google Scholar 

  124. Singer, O., Marr, R. A., Rockenstein, E., Crews, L., Coufal, N. G., Gage, F. H., Verma, I. M., and Masliah, E. (2005) Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 8, 1343-9.

    PubMed  CAS  Google Scholar 

  125. Sun, X., He, G., and Song, W. (2006) BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J 20, 1369-76.

    PubMed  CAS  Google Scholar 

  126. El-Amouri, S. S., Zhu, H., Yu, J., Marr, R., Verma, I. M., and Kindy, M. S. (2008) Neprilysin: an enzyme candidate to slow the progression of Alzheimer’s disease. Am J Pathol 172, 1342-54.

    PubMed  CAS  Google Scholar 

  127. Mueller-Steiner, S., Zhou, Y., Arai, H., Roberson, E. D., Sun, B., Chen, J., Wang, X., Yu, G., Esposito, L., Mucke, L., and Gan, L. (2006) Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron 51, 703-14.

    PubMed  CAS  Google Scholar 

  128. Cole, G., and Frautschy, S. A. (2006) Cat and mouse. Neuron 51(6), 671-2.

    PubMed  CAS  Google Scholar 

  129. Dodart, J. C., Marr, R. A., Koistinaho, M., Gregersen, B. M., Malkani, S., Verma, I. M., and Paul, S. M. (2005) Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 102, 1211-6.

    PubMed  CAS  Google Scholar 

  130. Kim, D., Nguyen, M. D., Dobbin, M. M., Fischer, A., Sananbenesi, F., Rodgers, J. T., Delalle, I., Baur, J. A., Sui, G., Armour, S. M., Puigserver, P., Sinclair, D. A., and Tsai, L. H. (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26, 369-79.

    Google Scholar 

  131. Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L. F., Kwon, H., Yi, S., Mucke, L., and Gan, L. (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280, 40364-74.

    PubMed  CAS  Google Scholar 

  132. Richard, K. L., Filali, M., Préfontaine, P., and Rivest, S. (2008) Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci 28, 5784-93.

    PubMed  CAS  Google Scholar 

  133. Nestler, E. (2000) Genes and addiction. Nat Genet 26, 277-81.

    PubMed  CAS  Google Scholar 

  134. Bahi, A., Boyer, F., Bussard, G., and Dreyer, J. L. (2005) Silencing dopamine D3-receptor in the nucleus accumbens shell in vivo induces behavioral changes in chronic cocaine delivery. Eur J Neurosci 21, 3415-26.

    PubMed  Google Scholar 

  135. Bahi, A., Boyer, F., and Dreyer, J. L. (2008) Cocaine-induced behavioral and reward upon lentivirus-mediated expression changes of BDNF and TrkB in the nucleus accumbens. Psychopharmacology 200, 129-39.

    PubMed  Google Scholar 

  136. Wersinger, C., Prou, D., Vernier, P., and Sidhu, A. (2003) Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB J 17, 2151-3.

    PubMed  CAS  Google Scholar 

  137. Wersinger, C., and Sidhu, A. (2005) Disruption of the interaction of alpha-synuclein with microtubules enhances cell surface recruitment of the dopamine transporter. Biochemistry 44, 13612-24.

    PubMed  CAS  Google Scholar 

  138. Boyer, F., and Dreyer, J. L. (2007) Alpha-synuclein in the nucleus accumbens induces changes in cocaine behavior in rats. Eur J Neurosci 26, 2764-76.

    PubMed  Google Scholar 

  139. Boyer, F., and Dreyer, J. L. (2008) The role of gamma-synuclein in cocaine-induced behavior in rats. Eur J Neurosci 27, 2938-51.

    PubMed  Google Scholar 

  140. Robinson, T. E., and Berridge, K. C. (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18, 247-291.

    PubMed  CAS  Google Scholar 

  141. Yue, Y., Chen, Z. Y., Gale, N. W. Blair-Flynn, J., Hu, T. J., Yue, X., Cooper, M., Crockett, D. P., Yancopoulos, G. D., Tessarollo, L., and Zhou, R. (2002) Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc Natl Acad Sci U S A 99, 10777-82.

    PubMed  CAS  Google Scholar 

  142. Bahi, A., and Dreyer, J. L. (2005) Cocaine-induced expression changes of axon guidance molecules in the adult rat brain. Mol Cell Neurosci 28, 275-91.

    CAS  Google Scholar 

  143. Halladay, A. K., Yue, Y., Michna, L., Widmer, D. A., Wagner, G. C., Zhou, R. (2000) Regulation of EphB1 expression by dopamine signaling. Brain Res Mol Brain Res 85, 171-8.

    PubMed  CAS  Google Scholar 

  144. Brenz-Verca, M. S., Widmer, D. A. J., Wagner, G. C., and Dreyer, J. L. (2001) Cocaine-induced expression of the tetratspanin CD81 and its relation to hypothalamic function. Mol Cell Neurosci 17, 303-16.

    PubMed  CAS  Google Scholar 

  145. Michna, L., Brenz-Verca, M. S., Widmer, D. A. J., Chen, S., Lee, J., Rogove, J., Zhou, R., Tsitsikov, E., Miescher, G. C., Dreyer, J. L., and Wagner, G. C. (2001) Altered sensitivity of CD81-deficient mice to neurobehavioral effects of cocaine. Mol Brain Res 90, 68-74.

    PubMed  CAS  Google Scholar 

  146. Bahi, A., Boyer, F., Kafri, T., and Dreyer, J. L. (2004) CD81-induced behavioural changes during chronic cocaine administration: in vivo gene delivery with regulatable lentivirus. Eur J Neurosci 19, 1621-33.

    PubMed  Google Scholar 

  147. Bahi, A., Boyer, F., Kolira, M., and Dreyer, J. L. (2005) In vivo gene silencing of CD81 by lentiviral expression of siRNAs suppresses cocaine-induced behavior. J Neurochem 92, 1243-55.

    PubMed  CAS  Google Scholar 

  148. Bahi, A., Boyer, F., Gumy, C., Kafri, T., and Dreyer, J. L. (2004) In vivo gene delivery of urokinase-type plasminogen activator with regulatable lentivirus induces behavioural changes in chronic cocaine administration. Eur J Neurosci 20, 3473-88.

    PubMed  Google Scholar 

  149. Bahi, A., Boyer, F., and Dreyer, J. L. (2006) Silencing urokinase in the ventral tegmental area in vivo induces changes in cocaine-induced hyperlocomotion. Eur J Neurosci 98, 1619-31.

    CAS  Google Scholar 

  150. Bahi, A., Kusnecov, A., and Dreyer, J. L. (2008) Effects of Urokinase-type plasminogen activator in the acquisition, expression and reinstatement of cocaine-induced conditioned place preference. Behav Brain Res 191, 17-25.

    PubMed  CAS  Google Scholar 

  151. Bahi, A., and Dreyer, J. L. (2008) Overexpression of plasminogen activators in the nucleus accumbens enhances cocaine, amphetamine and morphine-induced reward and behavioral sensitization. Genes Brain Behav 7, 244-56.

    PubMed  CAS  Google Scholar 

  152. Bahi, A., Kusnecov, A., and Dreyer, J. L. (2008) The role of tissue-type plasminogen activator system in amphetamine-induced conditioned place preference extinction and reinstatement. Neuropschopharmacology 33, 2726-34.

    CAS  Google Scholar 

  153. Yan, Y., Yamada, K., Mizoguchi, H., Noda, Y., Nagai, T., Nitta, A., and Nabeshima, T. (2007) Reinforcing effects of morphine are reduced in tissue plasminogen activator-knockout mice. Neuroscience 146, 50-9.

    PubMed  CAS  Google Scholar 

  154. Dulcan, M. (1997) Practice parameters for the assessment and treatment of children, adolescents, and adults with attention-deficit/hyperactivity disorder. American Academy of Child and Adolescent Psychiatry. J Am Acad Child Adolesc Psychiatry 36(Suppl 10), 85S-121S.

    PubMed  CAS  Google Scholar 

  155. Doyle, A. E. (2006) Executive functions in attention-deficit/hyperactivity disorder. J Clin Psychiatry 67, 21-6.

    PubMed  Google Scholar 

  156. Castellanos, F. X., Sonuga-Barke, E. J., Milham, M. P., and Tannock, R. (2006) Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci 10, 117-23.

    PubMed  Google Scholar 

  157. Willcutt, E. G., Pennington, B. F., Olson, R. K., Chhabildas, N., and Hulslander, J. (2005) Neuropsychological analyses of comorbidity between reading disability and attention deficit hyperactivity disorder: in search of the common deficit. Dev Neuropsychol 27, 35-78.

    PubMed  Google Scholar 

  158. Sonuga-Barke, E. J. (2005) Editorial. J Child Psychol Psychiatry 46, 225-6.

    PubMed  Google Scholar 

  159. Sagvolden, T., and Sergeant, J. A. (1998) Attention deficit/hyperactivity disorder - from brain dysfunctions to behaviour. Behav Brain Res 94, 1-10.

    PubMed  CAS  Google Scholar 

  160. Oades, R. D. (1998) Frontal, temporal and lateralized brain function in children with attention-deficit hyperactivity disorder: a psychophysiological and neuropsychological viewpoint on development. Behav Brain Res 94, 83-95.

    PubMed  CAS  Google Scholar 

  161. Black, D. W., and Moyer, T. (1998) Clinical features and psychiatric comorbidity of subjects with pathological gambling behavior. Psychiatr Serv 49, 1434-9.

    PubMed  CAS  Google Scholar 

  162. Comings, D. E. (2001) Clinical and molecular genetics of ADHD and Tourette syndrome. Two related polygenic disorders. Ann N Y Acad Sci 931, 50-83.

    PubMed  CAS  Google Scholar 

  163. Swanson, J. M., Flodman, P., Kennedy, J., Spence, M. A., Moyzis, R., Schuck, S., Murias, M., Moriarity, J., Barr, C., Smith, M., and Posner, M. (2000) Dopamine genes and ADHD. Neurosci Biobehav Rev 24, 21-5.

    PubMed  CAS  Google Scholar 

  164. Smith, K. M., Daly, M., Fischer, M., Yiannoutsos, C. T., Bauer, L., Barkley, R., Navia, B. A. (2003) Association of the dopamine beta hydroxylase gene with attention deficit hyperactivity disorder: genetic analysis of the Milwaukee longitudinal study. Am J Med Genet B Neuropsychiatr Genet 119B, 77-85.

    PubMed  Google Scholar 

  165. Roman, T., Rohde, L. A., and Hutz, M. H. (2004) Polymorphisms of the dopamine transporter gene: influence on response to methylphenidate in attention deficit-hyperactivity disorder. Am J Pharmacogenomics 4, 83-92.

    PubMed  CAS  Google Scholar 

  166. Oades, R. D. (2008) Dopamine-serotonin interactions in attention-deficit hyperactivity disorder (ADHD). Prog Brain Res 172, 543-65.

    PubMed  CAS  Google Scholar 

  167. Adriani, W., Boyer, F., Gioiosa, L., Macrì, S., Dreyer, J. L., and Laviola, G. (2008) Increased impulsive behavior and gambling temptation following lentivirus-mediated DAT overexpression in rats’ nucleus accumbens. Neuroscience 159, 47-58.

    PubMed  Google Scholar 

  168. Laviola, G., Macrì, S., Morley-Fletcher, S., and Adriani, W. (2003) Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neurosci Biobehav Rev 27, 19-31.

    PubMed  Google Scholar 

  169. Adriani, W., and Laviola, G. (2006) Delay aversion but preference for large and rare rewards in two choice tasks: implications for the measurement of self-control parameters. BMC Neurosci 7, 52.

    PubMed  Google Scholar 

  170. Jin, J., Bao, X., Wang, H., Pan, H., Zhang, Y., and Wu, X. (2008) RNAi-induced down-regulation of Mecp2 expression in the rat brain. Int J Dev Neurosci 26, 457-65.

    PubMed  CAS  Google Scholar 

  171. Nelson, E. D., Kavalali, E. T., and Monteggia, L. M. (2006) MeCP2-dependent transcriptional repression regulates excitatory neurotransmission. Curr Biol 16, 710-6.

    PubMed  CAS  Google Scholar 

  172. Raoul, C., Abbas-Terki, T., Bensadoun, J. C., Guillot, S., Haase, G., Szulc, J., Henderson, C. E., and Aebischer, P. (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11, 423-8.

    PubMed  CAS  Google Scholar 

  173. Ralph, G. S., Radcliffe, P. A., Day, D. M., Carthy, J. M., Leroux, M. A., Lee, D. C. P., Wong, L. F., Bilsland, L. G., Greensmith, L., Kingsman, S. M., Mitrophanous, K. A., Mazarakis, N. D., and Azzouz. M. (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11, 429-33.

    PubMed  CAS  Google Scholar 

  174. Pfeifer, A., Eigenbrod, S., Al-Khadra, S., Hofmann, A., Mitteregger, G., Moser, M., Bertsch, U., and Kretzschma, H. (2006) Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J Clin Invest 116, 3204-10.

    PubMed  CAS  Google Scholar 

  175. Zhao, P., Wang, C., Fu, Z., You, Y., Cheng, Y., Lu, X., Lu, A., Liu, N., Pu, P., Kang, C., Salford, L. G., and Fan, X. (2008) Lentiviral vector mediated siRNA knockdown of hTERT results in diminished capacity in invasiveness and in vivo growth of human glioma cells in a telomere length-independent manner. Int J Oncol 31, 361-8.

    Google Scholar 

  176. Hendriks, W. T. J., Ruitenberg, M. J., Blits, B., Boer, G. J., and Verhaagen, J. (2004) Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. Prog Brain Res 146, 451-76.

    PubMed  CAS  Google Scholar 

  177. Wu, D., Zhang, Y., Bo, X., Huang, W., Xiao, F., Zhang, X., Miao, T., Magoulas, C., and Subang, M. C. (2007) Actions of neuropoietic cytokines and cyclic AMP in regenerative conditioning of rat primary sensory neuron. Exp Neurol 204, 66-76.

    PubMed  CAS  Google Scholar 

  178. Dittgen, T., Nimmerjahn, A., Komai, S., Licznerski, P., Waters, J., Margrie, T. W., Helmchen, F., Denk, W., Brecht, M., and Osten, P. (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Nat Acad Sci U S A 101, 18206-11.

    CAS  Google Scholar 

  179. Kameda, H., Furuta, T., Matsuda, W., Ohira, K., Nakamura, K., Hioki, H., Kaneko, T. (2008) Targeting green fluorescent protein to dendritic membrane in central neurons. Neurosci Res 61, 79-91.

    PubMed  CAS  Google Scholar 

  180. Santamaria, J., Khalfallah, O., Sauty, C., Brunet, I., Sibieude, M., Mallet, J., Berrard, S., and Lecomte, M. J. (2009) Silencing of choline acetyltransferase expression by lentivirus-mediated RNA interference in cultured cells and in the adult rodent brain. J Neurosci Res 87(2), 532-44.

    PubMed  CAS  Google Scholar 

  181. Crittenden, J. R., Heidersbach, A., and McManus, M. T. (2007) Lentiviral strategies for RNAi knockdown of neuronal genes. Curr Protoc Neurosci 5, 5-26.

    Google Scholar 

  182. Porras, G., and Bezard, E. (2008) Preclinical development of gene therapy for Parkinson’s disease. Exp Neurol 209, 72-81.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Dreyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dreyer, JL. (2010). Lentiviral Vector-Mediated Gene Transfer and RNA Silencing Technology in Neuronal Dysfunctions. In: Federico, M. (eds) Lentivirus Gene Engineering Protocols. Methods in Molecular Biology, vol 614. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-533-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-533-0_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-532-3

  • Online ISBN: 978-1-60761-533-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics