Skip to main content

Convection-Enhanced Drug Delivery and Monitoring in a Rat Model

  • Protocol
  • First Online:
Book cover Drug Delivery to the Central Nervous System

Part of the book series: Neuromethods ((NM,volume 45))

  • 1191 Accesses

Abstract

Convection-enhanced drug delivery is a novel technology used to deliver drugs into brain tissue and which is currently evaluated in clinical trials. Drugs are delivered continuously via intracranial catheters and enable to achieve large volume of distributions at high drug concentrations with minimum systemic toxicity.

Accumulated clinical experience has shown that convection does not always form and the efficiency of distribution varies among patients and different drugs. The efficiency of drug distribution depends on multiple treatment and physiological parameters, such as infusate characteristics, catheter type, flow rate, volume of distribution, and tissue characterization along the catheter path and at the catheter tip. Therefore, extensive research is ongoing focusing on optimizing convection to enhance the therapeutic effect of drugs in various brain disorders.

This chapter describes various aspects of performing convection-enhanced drug delivery experiments in a rat brain model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., and Oldfield, E.H. (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6), 2076–2080.

    Article  CAS  PubMed  Google Scholar 

  2. Lieberman, D.M., Laske, D.W., Morrison, P.F., Bankiewicz, K.S., and Oldfield, E.H. (1995) Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 82(6), 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  3. Chen, M.Y., Lonser, R.R., Morrison, P.F., Governale, L.S., and Oldfield, E.H. (1999) Variables affecting CED to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 90, 315–320.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, M.Y., Hoffer, A., Morrison, P.F., Hamilton, J.F., Hughes, J., Schlageter, K.S., Lee, J., Kelly, B.R., and Oldfield, E.H. (2005) Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. J Neurosurg 103(2), 311–319.

    Article  PubMed  Google Scholar 

  5. Sampson, J.H., Brady, M.L., Petry, N.A., Croteau, D., Friedman, A.H., Friedman, H.S., Wong, T., Bigner, D.D., Pastan, I., Puri, R.K., and Pedain, C. (2007) Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery 60(2 Suppl 1), ONS89–98; discussion ONS98–9.

    PubMed  Google Scholar 

  6. Mardor, Y., Rahav, O., Zauberman, Y., Lidar, Z., Ocherashvilli, A., Daniels, D., Roth, Y., Maier, S.E., Orenstein, A., and Ram, Z. (2005) Convection-enhanced drug delivery: increased efficacy and magnetic resonance image monitoring. Cancer Res 65(15), 6858–6863.

    Article  CAS  PubMed  Google Scholar 

  7. Jagannathan, J., Walbridge, S., Butman, J.A., Oldfield, E.H., and Lonser, R.R. (2008) Effect of ependymal and pial surfaces on convection-enhanced delivery. J Neurosurg 109(3), 547–552.

    Article  PubMed  Google Scholar 

  8. MacKay, J.A., Deen, D.F., and Szoka, F.C. Jr. (2005) Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Res 1035(2), 139–153.

    Article  CAS  PubMed  Google Scholar 

  9. Saito, R., Krauze, M.T., Noble, C.O., Tamas, M., Drummond, D.C., Kirpotin, D.B., Berger, M.S., Park, J.W., and Bankiewicz, K.S. (2006) Tissue affinity of the infusate affects the distribution volume during convection-enhanced delivery into rodent brains: implications for local drug delivery. J Neurosci Methods 154(1–2), 225–232.

    Article  CAS  PubMed  Google Scholar 

  10. Neeves, K.B., Sawyer, A.J., Foley, C.P., Saltzman, W.M., and Olbricht, W.L. (2007) Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles. Brain Res 1180, 121–132.

    Article  CAS  PubMed  Google Scholar 

  11. Saito, R., Bringas, J.R., McKnight, T.R., Wendland, M.F., Mamot, C., Drummond, D.C., Kirpotin, D.B., Park, J.W., Berger, M.S., and Bankiewicz, K.S. (2004) Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res 64(7), 2572–2579.

    Article  CAS  PubMed  Google Scholar 

  12. Croteau, D., Walbridge, S., Morrison, P.F., Butman, J.A., Vortmeyer, A.O., Johnson, D., Oldfield, E.H., and Lonser, R.R. (2005) Real-time in vivo imaging of the convective distribution of a low-molecular-weight tracer. J Neurosurg 102(1), 90–97.

    Article  PubMed  Google Scholar 

  13. Lonser, R.R., Warren, K.E., Butman, J.A., Quezado, Z., Robison, R.A., Walbridge, S., Schiffman, R., Merrill, M., Walker, M.L., Park, D.M., Croteau, D., Brady, R.O., and Oldfield, E.H. (2007) Real-time image-guided direct convective perfusion of intrinsic brainstem lesions. Technical note. J Neurosurg 107(1), 190–197.

    Article  PubMed  Google Scholar 

  14. Kroll, R.A., Michael, A., Muldoon, L.L., Roman-Goldstein, S., and Neuwelt, E.A. (1996) Increasing volume of distribution to the brain with interstitial infusion: dose, rather than convection, might be the most important factor. Neurosurg Online 38(4), 746–754.

    CAS  Google Scholar 

  15. Perlstein, B., Ram, Z., Daniels, D., Ocherashvilli, A., Roth, Y., Margel, S., and Mardor, Y. (2008) Convection-enhanced delivery of maghemite nanoparticles: Increased efficacy and MRI monitoring. Neuro Oncol 10(2), 153–161.

    Article  CAS  PubMed  Google Scholar 

  16. Noble, C.O., Krauze, M.T., Drummond, D.C., Yamashita, Y., Saito, R., Berger, M.S., Kirpotin, D.B., Bankiewicz, K.S., and Park, J.W. (2006) Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res 66(5), 2801–2806.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Z.J., Broaddus, W.C., Viswanathan, R.R., Raghavan, R., and Gillies, G.T. (2002) Intraparenchymal drug delivery via positive-pressure infusion: experimental and modeling studies of poroelasticity in brain phantom gels. IEEE Trans Biomed Eng 49(2), 85–96.

    Article  PubMed  Google Scholar 

  18. Raghavan, R., Brady, M.L., Rodríguez-Ponce, M.I., Hartlep, A., Pedain, C., and Sampson, J.H. (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20(4), E12.

    Article  PubMed  Google Scholar 

  19. Hadaczek, P., Yamashita, Y., Mirek, H., Tamas, L., Bohn, M.C., Noble, C., Park, J.W., and Bankiewicz, K. (2006) The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 14(1), 69–78.

    Article  CAS  PubMed  Google Scholar 

  20. Mamot, C., Nguyen, J.B., Pourdehnad, M., Hadaczek, P., Saito, R., Bringas, J.R., Drummond, D.C., Hong, K., Kirpotin, D.B., McKnight, T., Berger, M.S., Park, J.W., and Bankiewicz, K.S. (2004) Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J Neurooncol 68(1), 1–9.

    Article  PubMed  Google Scholar 

  21. Nguyen, T.T., Pannu, Y.S., Sung, C., Dedrick, R.L., Walbridge, S., Brechbiel, M.W., Garmestani, K., Beitzel, M., Yordanov, A.T., and Oldfield, E.H. (2003) Convective distribution of macromolecules in the primate brain demonstrated using computerized tomography and magnetic resonance imaging. J Neurosurg 98(3), 584–590.

    Article  CAS  PubMed  Google Scholar 

  22. Lonser, R.R., Walbridge, S., Garmestani, K., Butman, J.A., Walters, H.A., Vortmeyer, A.O., Morrison, P.F., Brechbiel, M.W., and Oldfield, E.H. (2002) Successful and sage perfusion of the primate brainstem: in vivo MRI of macromolecular distribution during infusion. J Neurosurg 97, 905–913.

    Article  PubMed  Google Scholar 

  23. Van Zijl, P.C., Moonen, C.T., Faustino, P., Pekar, J., Kaplan, O., and Cohen, J.S. (1991) Complete separation of intracellular, and extracellular information in NMR spectra by diffusion weighting. Proc Natl Acad Sci USA 88, 3228–3232.

    Article  PubMed  Google Scholar 

  24. Pilatus, U., Shim, H., Artemov, D., Davis, D., van Zijl, P.C., and Glickson, J.D. (1997) Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR. Magn Reson Med 37, 825–832.

    Article  CAS  PubMed  Google Scholar 

  25. Mardor, Y., Roth, Y., Lidar, Z., Jonas, T., Pfeffer, R., Maier, S.E., Faibel, M., Nass, D., Hadani, M., Orenstein, A., Cohen, J.S., and Ram, Z. (2001) Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res 61(13), 4971–4973.

    CAS  PubMed  Google Scholar 

  26. Lidar, Z., Mardor, Y., Jonas, T., Pfeffer, R., Faibel, M., Nass, D., Hadani, M., and Ram, Z. (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 100(3), 472–479.

    Article  CAS  PubMed  Google Scholar 

  27. Tanner, P.G., Holtmannspötter, M., Tonn, J.C., and Goldbrunner, R. (2007) Effects of drug efflux on convection-enhanced paclitaxel delivery to malignant gliomas: technical note. Neurosurgery 61(4), E880–2; discussion E882.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work in our lab was supported by grants from The Israeli ministry of health, Israel Science Foundation, Israel Cancer Association, Goldhirsh Foundation, and Adams Brain Research Center at Tel-Aviv University.The authors would like to thank the MRI Research Group at The Advanced Technology Center, Sheba Medical Center – Dianne Daniels, David Last, Ran Shneor, Gregory Tamar and Sharona Salomon – for their help in obtaining the figures and the unpublished data that have been incorporated in this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mardor, Y., Ram, Z. (2010). Convection-Enhanced Drug Delivery and Monitoring in a Rat Model. In: Jain, K. (eds) Drug Delivery to the Central Nervous System. Neuromethods, vol 45. Humana Press. https://doi.org/10.1007/978-1-60761-529-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-529-3_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-528-6

  • Online ISBN: 978-1-60761-529-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics