Skip to main content

Vesicular Systems for Intranasal Drug Delivery

  • Protocol
  • First Online:
Drug Delivery to the Central Nervous System

Part of the book series: Neuromethods ((NM,volume 45))

Abstract

Recently, the nasal route for systemic drug delivery has gained great interest. It provides several advantages over other routes of drug administrations. These include rapid absorption, avoidance of the intestinal and hepatic presystemic disposition, and high potential for drug transfer to the cerebrospinal fluid. Unfortunately, the mucociliary clearance, which reduces the residence time of the nasally applied drugs, and the poor nasal permeability made it difficult for many drugs to be delivered through this route. Alternative approaches have been adopted to overcome these problems. These include the use of mucoadhesive formulations or chemical penetration enhancers. Vesicular drug delivery systems provide promising alternative for enhanced and controlled nasal drug delivery.

Alternative terms have been used to describe the vesicular systems. These include liposomes, niosomes, ethosomes, and transfersomes. These systems are morphologically similar but differ in composition and function. Nasal delivery employs liposomes and niosomes, and their corresponding proconcentrates, proliposomes and proniosomes. Encouraging results have been recorded for these systems after nasal application with the possibility of achieving many objectives such as systemic delivery of small and large molecular weight drugs. This review article discusses such systems for intranasal vaccination and for improvement of nasal drug delivery to the central nervous system. The review critically evaluates the potential of such systems for systemic drug delivery after intranasal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Illum, L. (2003) Nasal drug delivery-possibilities, problems and solutions. J Control Release 87, 187–198.

    Article  CAS  PubMed  Google Scholar 

  2. Ugwoke, M. I., Verbek, N., and Kinget, R. (2001) The biopharmaceutical aspects of nasal mucoadhesion drug delivery. J Pharm Pharmacol 53, 3–22.

    Article  CAS  PubMed  Google Scholar 

  3. Arora, P., Sharma, S., and Gary, S. S. (2002) Permeability issues in nasal drug delivery. Drug Discov Today 7, 967–975.

    Article  CAS  PubMed  Google Scholar 

  4. Chien, Y. W., Su, K. S. E., and Chang, S. F. (1989) Anatomy and physiology of the nose. In: Swarbrick, J., (eds.), Nasal systemic drug delivery: drugs and pharmaceutical science, vol. 39. Marcel Dekker, New York, pp. 1–19.

    Google Scholar 

  5. Illum, L., Watts, P., Fisher, A. N., Hinchcliffe, M., Norbury, H., Jabbal-Gill, I., Nankervis, R., and Davis, S. S. (2002) Intranasal delivery of morphine. J Pharmacol Exp Ther 301, 391–400.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, X. Q., Fawcett, J. R., Rahman, Y. E., Ala, T. A., and Frey 2nd, W. H. (1998) Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimer Dis 1, 35–44.

    CAS  Google Scholar 

  7. Liu, J. X. F., Fawcett, R., Thorne, R. G., DeFor, T. A., and Frey 2nd, W. H. (2001) Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemicdamage. J Neurol Sci 187, 91–97.

    Article  CAS  PubMed  Google Scholar 

  8. Fehm, H. L., Perras, B., Smolink, R., Kern, W., and Born, J. (2000) Manipulating neuropeptidegric pathways in humans: a novel approach in neuropharmacology? Eur J Pharmacol 405, 43–54.

    Article  CAS  PubMed  Google Scholar 

  9. Giacobini, P., Kopin, A. S., Beart, P. M., Mercer, L. D., Fasolo, A., and Wray, S. (2004) Cholecystokinin modulates migration of gonadotropin-releasing hormone-1 neurons. J Neurosci 24, 4737–4748.

    Article  CAS  PubMed  Google Scholar 

  10. Turker, S., Onur, E., and Ozer, Y. (2004) Nasal route and drug delivery systems. Pharm World Sci 26, 137–142.

    Article  PubMed  Google Scholar 

  11. Merkus, F. W., Verhoef, J. C., Schipper, N. G., and Marttin, E. (1998) Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev 29, 13–38.

    Article  PubMed  Google Scholar 

  12. Alsarra, I. A., Hamed, A. Y., Mahrous, G. M., El Maghraby, G. M., Al-Robayan, A. A., and Alanazi, F. K. (2008) Mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Drug Dev Ind Pharm 3, 1–11.

    Google Scholar 

  13. Guo, J., Ping, Q., Jiang, G., Dong, J. Q. S., Feng, L., Li, Z., and Li, C. (2004) Transport of leuprolide across rat intestine, rabbit intestine and caco-2 cell monolayer. Int J Pharm 278, 415–422.

    Article  CAS  PubMed  Google Scholar 

  14. Varshosaz, J., Sadrai, H., and Heidar, A. (2006) Nasal delivery of insulin using bioadhesive chitosan gels. Drug Deliv 13, 31–38.

    Article  CAS  PubMed  Google Scholar 

  15. Callens, G., and Remon, J. P. (2000) Evaluation of starch-maltodextrin-carpobol 974 for nasal delivery of insulin in rabbits. J Control Release 66, 215–220.

    Article  CAS  PubMed  Google Scholar 

  16. Lindhardt, K., Ravn, G., Gizurarson, S., and Bechgaard, E. (2000) Intranasal absorption of buprenorphine in-vivo bioavailability study in sheep. Int J Pharm 205, 159–163.

    Article  CAS  PubMed  Google Scholar 

  17. Soan, R. J., Hinchcliff, M., Davis, S. S., and Illum, L. (2001) Clearance characteristics of chitosan based formulations in sheep nasal cavity. Int J Pharm 217, 183–191.

    Article  Google Scholar 

  18. Wang, W. (1999) Instability, stabilization and formulation of liquid protein pharmaceuticals. Int J Pharm 85, 129–188.

    Article  Google Scholar 

  19. Kublik, H., and Vidgren, M. T. (1998) Nasal delivery systems and their effect on deposition and absorption. Adv Drug Deliv Rev 29, 157–177.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang, W., and Schwendeman, S. P. (2001) Stabilization and controlled release of bovin serum albumin encapsulated in poly(D-L-lactide) and poly(ethylene glycol) microspheres blends. Pharm Res 18, 878–885.

    Article  CAS  PubMed  Google Scholar 

  21. Mainardes, R. M., Urban, M. C., Cinto, P. O., Chaud, M. V., Evangelista, R. C., and Daflon Gremião, M. P. (2006) Liposomes and micro/nanoparticles as colloidal carriers for nasal drug delivery. Curr Drug Deliv 3, 275–285.

    Article  CAS  PubMed  Google Scholar 

  22. Illum, I. (2007) Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci 96, 473–483.

    Article  CAS  PubMed  Google Scholar 

  23. Stanleya, A. C., Huntleya, J. F., Jeffreyb, M., and Buxtona, D. (2001) Characterization of ovine nasal-associated lymphoid tissue and identification of M cells in the overlying follicle-associated epithelium. J Comp Pathol 125, 262–270.

    Article  Google Scholar 

  24. Behrens, I., Pena, A. V. I., Alonso, M. J., and Kissel, T. (2002) Comparative uptake studies of bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm Res 19, 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  25. Illum, L. (2000) Transport of drug from the nasal cavity to central nervous system. Eur J Pharm Sci 11, 1–18.

    Article  CAS  PubMed  Google Scholar 

  26. Illum, L. (2004) Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 56, 3–17.

    Article  CAS  PubMed  Google Scholar 

  27. Cerijido, M., Shoskani, L., and Contreres, R. (2000) Molecular physiology and pathophysiology of tight junction I. Biogenesis of tight junction and epithelial polarity. Am J Physiol 279, 477–482.

    Google Scholar 

  28. Hayashi, M., Hirasawa, T., Muraoka, T., Shiga, M., and Awaza, S. (1985) Comparison of water influx and sieving coefficient in rat jejunal, rectal and nasal absorption of antipyrine. Chem Pharm Bull 33, 2149–2152.

    CAS  PubMed  Google Scholar 

  29. Frey 2nd, W. H. (2002) Intranasal delivery: bypassing the blood-brain barrier to deliver therapeutic agents to the brain and spinal cord. Drug Deliv Technol 2, 46–49.

    Google Scholar 

  30. Behl, C. R., Pimplaskar, H. K., Sileno, A. P., Demeireles, J., and Remo, V. D. (1998) Effect of physiochemical properties and other factors on systemic nasal drug delivery. Adv Drug Deliv Rev 29, 89–116.

    Article  CAS  PubMed  Google Scholar 

  31. Vyas, T. K., Shahiwala, A., Marathe, S., and Misra, A. (2005) Intranasal drug delivery for central nervous system. Curr Drug Deliv 2, 165–175.

    Article  CAS  PubMed  Google Scholar 

  32. Thorne, R. G., Pronk, G. J., and Padmanabhan, V. (2004) Delivery of insulin like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127, 481–496.

    Article  CAS  PubMed  Google Scholar 

  33. Thorne, R. G., Pronk, G., and Frey, W. H. (2000) Delivery of insulin like growth factor-I to the brain and spinal cord along olfactory and trigeminal pathways following intranasal administration: a non-invasive method for bypassing the blood-brain barrier. Soc Neurosci Abstr 26, 1365.

    Google Scholar 

  34. Yang, J. P., Liub, H. J., Chenga, S. M., Wanga, Z. L., Chenga, X., Yuc, H. X., and Liua, X. F. (2009) Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett 449, 108–111.

    Article  CAS  PubMed  Google Scholar 

  35. Ross, T. M., Martinez, P. M., Renner, J. C., Thorne, R. G., Hanson, L. R., and Frey 2nd, W. H. (2004) Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol 151, 66–77.

    Article  CAS  PubMed  Google Scholar 

  36. Földi, M. (1996) The brain and the lymphatic system (I). Lymphology 29, 1–9.

    PubMed  Google Scholar 

  37. Ugwoke, M. I., Agu, R. U., Verbeke, N., and Kinget, R. (2005) Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev 57, 1640–1665.

    Article  CAS  PubMed  Google Scholar 

  38. Soane, R. J., Frier, M., Perkins, A. C., Jones, N. S., Davis, S. S., and Illum, L. (1999) Evaluation of the clearance characteristics of bioadhesive systems in humans. Int J Pharm 178, 55–65.

    Article  CAS  PubMed  Google Scholar 

  39. Cornaz, A. L., and Buri, P. (1994) Nasal mucosa as an absorption barrier. Eur J Pharm Biopharm 40, 261–270.

    Google Scholar 

  40. Green, A., Smallman, L. A., Logan, A. C. M., and Darke-lee, A. B. (1995) The effect of temperature on nasal ciliary beat frequency. Clin Otolaryngol 20, 178–180.

    Article  CAS  PubMed  Google Scholar 

  41. Chung, F. Y., and Donovan, M. D. (1996) Nasal presystemic metabolism of peptide drugs: substance P metabolism in the sheep nasal cavity. Int J Pharm 128, 229–237.

    Article  CAS  Google Scholar 

  42. Bernkop-schnurch, A. (1998) Use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J Control Release 52, 1–16.

    Article  CAS  PubMed  Google Scholar 

  43. Krishnamoorthy, R., and Mitra, AK. (1998) Prodrugs for nasal drug delivery. Adv Drug Deliv Rev 29, 135–146.

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto, A., Iseki, T., Ochi-Sugiyama, M., Okada, N., Fujita, T., and Muranishi, S. (2001) Absorption of water-soluble compounds with different molecular weight. J Control Release 76, 363–374.

    Article  CAS  PubMed  Google Scholar 

  45. Hinchcliffe, M., and Illum, L. (1999) Intranasal insulin delivery and therapy. Adv Drug Deliv Rev 35, 199–234.

    Article  CAS  PubMed  Google Scholar 

  46. Corbo, D. C., Liu, J. C., and Chien, Y. W. (1990) Characterization of the barrier properties of mucosal membrane. J Pharm Sci 79, 202–206.

    Article  CAS  PubMed  Google Scholar 

  47. Derendorf, H., and Meltzer, E. O. (2008) Molecular and clinical pharmacology of intranasal corticosteroids: clinical and therapeutic implications. Allergy 63, 1292–1300.

    Article  CAS  PubMed  Google Scholar 

  48. Yang, C., Gao, H., and Mitra, A. (2000) Chemical stability, enzymatic hydrolysis, and nasal uptake of amino acid ester prodrugs of acyclovir. J Pharm Sci 90, 617–624.

    Article  Google Scholar 

  49. Al-Ghananeem, A. M., Traboulsi, A. A., Dittert, L. W., and Hussain, A. A. (2002) Targeted brain delivery of 17β-estradiol via nasally administered water soluble prodrugs. AAPS Pharm Sci Tech 3, 1–8.

    Article  Google Scholar 

  50. El Maghraby, G. M., Barry, B. W., and Williams, A. C. (2008) Liposomes and skin. From drug delivery to model membranes. Eur J Pharm Sci 34, 203–222.

    Article  CAS  PubMed  Google Scholar 

  51. New, R. R. C. (1990) Introduction. In: New, R. (ed.), Liposomes a practical approach, 1st Ed//. Oxford University Press, Oxford, pp. 1–32.

    Google Scholar 

  52. Brandl, M. (2001) Liposomes as drug carriers: a technological approach. Biotechnol Annu Rev 7, 59–85.

    Article  CAS  PubMed  Google Scholar 

  53. El Maghraby, G. M., Williams, A. C., and Barry, B. W. (2005) Drug interaction and location in liposomes: correlation with polar surface area. Int J Pharm 292, 179–185.

    Article  CAS  PubMed  Google Scholar 

  54. Gregoriadis, G., and Florence, A. T. (1993) Liposomes in drug delivery, clinical, diagnostic and ophthalmic potential. Drugs 45, 15–28.

    Article  CAS  PubMed  Google Scholar 

  55. Iwanaga, K., Matsumoto, S., Morimoto, K., Kakemi, M., Yamashita, S., and Kimura, T. (2000) Usefulness of liposomes as an intranasal dosage formulation for topical drug application. Biol Pharm Bull 23, 323–326.

    CAS  PubMed  Google Scholar 

  56. Sakaue, G., Hiroi, T., Nakagawa, Y., Someya, K., Iwatani, K., Sawa, Y., Takahashi, H., Honda, M., Kunisawa, J., and Kiyono, H. (2003) HIV mucosal vaccine: Nasal immunization with gp160-encapsulated hemagglutinating virus of Japan-liposome induces antigen-specific CTLs and neutralizing antibody responses. J Immunol 170, 495–502.

    CAS  PubMed  Google Scholar 

  57. De Jonge, M. I., Hamstra, H. J., Jiskoot, W., Roholl, P., Williams, N. A., Dankert, J., Van Alphen, L., and Van der Ley, P. (2004) Intranasal immunisation of mice with liposomes containing recombinant meningococcal OpaB and OpaJ proteins. Vaccine 22, 4021–4028.

    Article  PubMed  CAS  Google Scholar 

  58. Lambkin, R., Oxford, J. S., Bossuyt, S., Mann, A., Metcalfe, I. C., Herzog, C., Viret, J. F., and Gluck, R. (2004) Strong local and systemic protective immunity induced in the ferret model by an intranasal virosome formulated influenza subunit vaccine. Vaccine 22, 4390–4396.

    Article  CAS  PubMed  Google Scholar 

  59. Langley, J. M., Halperin, S. A., McNeil, S., Smith, B., Jones, T., Burt, D., Mallett, C. P., Lowell, G. H., and Fries, L. (2006) Safety and immunogenicity of a proteosome(TM)-trivalent inactivated influenza vaccine, given nasally to healthy adults. Vaccine 24, 1601–1608.

    Article  CAS  PubMed  Google Scholar 

  60. Chen, M., Deng, Q., Li, X. R., and Liu, Y. (2007) The hypoglycaemia effect of salmon calcitonin ultra-fexible liposomes after nasal administration in rats. Yao Xue Xue Bao 42, 681–686.

    CAS  PubMed  Google Scholar 

  61. Patel, G. B., Ponce, A., Zhou, H., and Chen, W. (2008) Safety of intranasal administration archaeal lipid mucosal vaccine aduvant and delivery (AMWAD) vaccine in mice. Int J Toxicol 27, 329–339.

    Article  CAS  PubMed  Google Scholar 

  62. Tafaghodi, M., Jaafari, M. R., and Sajadi-Tabassi, S. A. (2008) Nasal immunization studies by cationic, fusogenic and cationic-fusogenic liposomes encapsulated with tetanus toxoid. Curr Drug Deliv 5, 108–113.

    Article  CAS  PubMed  Google Scholar 

  63. Rosada, R. S., de la Torre, L. G., Frantz, F. G., Trombone, A. P., Zárate-Bladés, C. R., Fonseca, D. M., Souza, P. R., Brandão, I. T., Masson, A. P., Soares, E. G., Ramos, S. G., Faccioli, L. H., Silva, C. L., Santana, M. H., and Coelho-Castelo, A. A. (2008) Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunol 9, 1–13.

    Article  CAS  Google Scholar 

  64. Kaur, I. P., Garg, A., Singla, A. K., and Aggarwal, D. (2004) Vesicular systems in ocular drug delivery: an overview. Int J Pharm 269, 1–14.

    Article  CAS  PubMed  Google Scholar 

  65. Mozafari, M. R. (2005) Liposomes: an overview of manufacture techniques. Cell Mol Biol Lett 10, 711–719.

    CAS  PubMed  Google Scholar 

  66. Gregoriadis, G. (1995) Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 13, 527–537.

    Article  CAS  PubMed  Google Scholar 

  67. Nii, T., and Ishii, F. (2005) Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the micro-encapsulation vesicle method. Int J Pharm 298, 198–205.

    Article  CAS  PubMed  Google Scholar 

  68. Uchegbu, I. F., and Vyas, S. P. (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172, 33–70.

    Article  CAS  Google Scholar 

  69. Alsarra, I. A. (2008) Evaluation of proniosomes as an alternative strategy to optimize piroxicam transdermal delivery. J Microencapsul 11, 1–7.

    Google Scholar 

  70. Alsarra, I. A., Bosela, A. A., Al-Mohizea, A. M., Mahrous, J. M., and Neau, S. H. (2005) Modulating intestinal uptake of atenolol using niosomes as drug permeation enhancers. Sci Pharm 73, 81–93.

    CAS  Google Scholar 

  71. Alsarra, I. A., Bosela, A. A., Ahmed, S. M., and Mahrous, J. M. (2005) Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur J Pharm Biopharm 59, 485–490.

    Article  CAS  PubMed  Google Scholar 

  72. Manosroi, A., Chutoprapat, R., Abe, M., and Manosroi, J. (2008) Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. Int J Pharm 352, 248–255.

    Article  CAS  PubMed  Google Scholar 

  73. Hu, C., and Rhodes, D. G. (1999) Proniosomes: a novel drug carrier preparation. Int J Pharm 185, 23–35.

    Article  CAS  PubMed  Google Scholar 

  74. Carafa, M., Santucci, E., and Lucania, G. (2002) Lidocaine-loaded non-ionic surfactant vesicles: characterization and in vitro permeation studies. Int J Pharm 231, 21–32.

    Article  CAS  PubMed  Google Scholar 

  75. Biju, S. S., Talegaonkar, S., Mishra, P. R., and Khar, R. K. (2006) Vesicular systems: an overview. Indian J Pharm Sci 68, 141–153.

    Article  CAS  Google Scholar 

  76. Dufes, C., Schatzlein, A. G., Tetley, L., Gray, A. I., Watson, D. G., Olivier, J. C., Couet, W., and Uchegbu, I. F. (2000) Niosomes and polymeric chitosan based vesicles bearing transferring and glucose ligands for drug targeting. Pharm Res 17, 1250–1258.

    Article  CAS  PubMed  Google Scholar 

  77. Vyas, S. P., Singh, R. P., Jain, S., Mishra, V., Mahor, S., Singh, P., Gupta, P. N., Rawat, A., and Dubey, P. (2005) Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int J Pharm 296, 80–86.

    Article  CAS  PubMed  Google Scholar 

  78. Hu, C., and Rhodes, D. G. (2000) Proniosomes: a novel drug carrier preparation. Int J Pharm 206, 110–122.

    Article  CAS  PubMed  Google Scholar 

  79. Katare, O. P., Vyas, S. P., and Dixit, V. K. (1991) Preparation and performance evaluation of plain proliposome systems for cytoprotection. J Microencapsul 8, 295–300.

    Article  CAS  PubMed  Google Scholar 

  80. Muramatsu, K., Maitani, Y., Takayama, K., and Nagai, T. (1999) The relationship between the liposomal membrane of insulin after nasal administration of liposomes modified with an enhancer containing insulin in rabbits. Drug Dev Ind Pharm 25, 1099–1105.

    Article  CAS  PubMed  Google Scholar 

  81. Law, S. L., Huang, K. J., and Chou, H. Y. (2001) Preparation of desmopressin-containing liposomes for intranasal delivery. J Control Release 70, 375–382.

    Article  CAS  PubMed  Google Scholar 

  82. Maitani, Y., Asano, S., Takahashi, S., Nasayuki, M., and Nagai, T. (1992) Permeability of insulin in liposomes through the nasal mucosa of rabbits. Chem Pharm Bull 40, 1569–1572.

    CAS  PubMed  Google Scholar 

  83. Jain, A. K., Chalasani, K. B., Khar, R. K., Ahamed, F. J., and Diwan, P. V. (2007) Mucoadhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery. J Drug Target 15, 417–427.

    Article  CAS  PubMed  Google Scholar 

  84. Law, S. L., Huang, K. J., Chou, H. Y., and Cherng, J. Y. (2001) Enhancement of nasal absorption of calcitoninloded in liposomes. J Liposome Res 11, 165–174.

    Article  CAS  PubMed  Google Scholar 

  85. Alsarra, I. A., Hamed, A. Y., and Alanazi, F. K. (2008) Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug Deliv 15, 313–321.

    Article  CAS  PubMed  Google Scholar 

  86. Ding, W. X., Qi, X. R., Fu, Q., and Piao, H. S. (2007) Pharmacokinetics and pharmacodynamics of sterylglucoside-modified liposomes for levonorgestrel delivery via nasal route. Drug Deliv 14, 101–104.

    Article  CAS  PubMed  Google Scholar 

  87. Shahiwala, A., and Misra, A. (2006) Preliminary investigation of the nasal delivery of liposomal leuprorelin acetate fro contraception in rats. J Pharm Pharmacol 58, 19–26.

    Article  CAS  PubMed  Google Scholar 

  88. Lee, V. H. I., Yamamoto, A., and Kompella, U. B. (1991) Mucosal penetration enhancers for facilitation of peptide and protein drug absorption. Crit Rev Ther Drug Carrier Syst 8, 191–192.

    Google Scholar 

  89. Zhang, Y. J., Wang, X. L., Wu, J. M., and Cheng, M. X. (2007) Studies on preparation of recombinant hirudin-2 liposome and its pharmacokinetics by nasal delivery in rats. Zhongguo Zhong Yao Za Zhi 32, 801–804.

    CAS  PubMed  Google Scholar 

  90. Jung, B. H., Chung, B. C., Chung, S. J., Lee, M. H., and Shim, C. K. (2000) Prolonged delivery of nicotine in rats via nasal administration of proliposomes. J Control Release 66, 73–79.

    Article  CAS  PubMed  Google Scholar 

  91. Ahn, B. N., Kim, S. K., and Shim, C. K. (1995) Proliposomes as an intranasal dosage form for the sustained delivery of propranolol. J Control Release 34, 203–210.

    Article  CAS  Google Scholar 

  92. Kaparissides, C., Alexandridou, S., Kotti, K., and Chaitidou, S. (2006) Recent advances in novel drug delivery systems. J Nanosci Nanotechnol 2, 1–11.

    Google Scholar 

  93. Schneider, S. D., Rusconi, S., Seger, R. A., and Hossle, J. P. (1997) Adenovirusmediated gene transfer into monocyte-derived macrophages of patients with X-linked chronic granulomatous disease: ex vivo correction of feficient respiratory burst. Gene Ther 4, 524–532.

    Article  CAS  PubMed  Google Scholar 

  94. Alanazi, F., Fu, Z. F., and Lu, D. R. (2004) Effective transfection of rabies DNA vaccine in cell culture using an artificial lipoprotein carrier system. Pharm Res 21, 675–682.

    Article  CAS  PubMed  Google Scholar 

  95. Oudrhiri, N., Vigneron, J. P., Peuchmaur, M., Leclerc, T., Lehn, J. M., and Lehn, P. (1997) Gene transfer by guanidinium-cholesterol cationic lipids into airway epithelial cells in vitro and in vivo. Proc Natl Acad Sci USA 94, 1651–1656.

    Article  CAS  PubMed  Google Scholar 

  96. Simoes, S., Slepushkin, V., Pretzer, E., Dazin, P., Gaspar, R., de Lima, M. C., and Duzgunes, N. (1999) Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides. J Leuk Biol 65, 270–279.

    CAS  Google Scholar 

  97. Kawakami, S., Sato, A., Nishikawa, M., Yamashita, F., and Hashida, M. (2000) Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther 7, 292–299.

    Article  CAS  PubMed  Google Scholar 

  98. Goncharova, E. P., Ryzhikov, A. B., Bulychev, L. E., Sizov, A. A., Lebedev, L. R., Poryvaev, V. D., Karpenko, L. I., and Il’ichev, A. A. (2002) A study of systems for delivering antigens and plasmid DNA for intranasal immunization against tick-borne encephalitis virus. Wien Klin Wochenschr 31, 630–635.

    Google Scholar 

  99. Jain, P. T., Seth, P., and Gewirtz, D. A. (1999) Estradiol enhances liposomemediated uptake, preferential nuclear accumulation and functional expression of exogenous genes in MDA-MB231 breast tumor cells. Biochim Biophys Acta 1451, 224–232.

    Article  CAS  PubMed  Google Scholar 

  100. Jain, P. T., and Gewirtz, D. A. (1998) Estradiol enhances gene delivery to human breast tumor cells. J Mol Med 76, 709–714.

    Article  CAS  PubMed  Google Scholar 

  101. Wiseman, J. W., Goddard, C. A., and Colledge, W. H. (2001) Steroid hormone enhancement of gene delivery to a human airway epithelial cell line in vitro and mouse airways in vivo. Gene Ther 8, 1562–1571.

    Article  CAS  PubMed  Google Scholar 

  102. Braun, S, Jenny, C., Thioudellet, C., Perraud, F., Claudepierre, M. C., Langle-Rouault, F., Ali-Hadji, D., Schughart, K., and Pavirani, A. (1999) In vitro and in vivo effects of glucocorticoids on gene transfer to skeletal muscle. FEBS Lett 454, 277–282.

    Article  CAS  PubMed  Google Scholar 

  103. Tanaka, S. I., Yamakawa, T., Kimura, M., Aok, I., Kameie, J., Okudac, K., and Mobbsg, C. (2004) Daily nasal inoculation with the insulin gene ameliorates diabetes in mice. Diabetes Res Clin Pract 63, 1–9.

    Article  CAS  PubMed  Google Scholar 

  104. Song, Y. K., and Liu, D. (1998) Free liposomes enhance the transfection activity of DNA/lipid complexes in vivo by intravenous administration. Biochim Biophys Acta 1372, 141–150.

    Article  CAS  PubMed  Google Scholar 

  105. Hyde, S. C., Southern, K. W., Gileadi, U., Fitzjohn, E. M., Mofford, K. A., Waddell, B. E., Gooi, H. C., Goddard, C. A., Hannavy, K., Smyth, S. E., Egan, J. J., Sorgi, F. L., Huang, L., Cuthbert, A. W., Evans, M. J., Colledge, W. H., Higgins, C. F., Webb, A. K., and Gill, D. R. (2000) Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther 7, 1156–1165.

    Article  CAS  PubMed  Google Scholar 

  106. Suckow, M. A., Jarvinen, L. Z., HogenEsch, H., Park, K., and Bowersock, T. L. (2002) Immunization of rabbits against a bacterial pathogen with and alginate microparticle vaccine. J Control Release 85, 227–235.

    Article  CAS  PubMed  Google Scholar 

  107. Czerkinsky, C., Anjuere, F., McGhee, J. R., George-Chandy, A., Holmgren, J., and Kieny, M. P. (1999) Mucosal immunity and tolerance: relevance to vaccine development. Immunol Rev 170, 197–222.

    Article  CAS  PubMed  Google Scholar 

  108. Chen, S. C., Fynan, E. F., Greenberg, H. B., and Herrmann, J. E. (1999) Immunity obtained by gene-gun inoculation of a rotavirus DNA vaccine to the abdominal epidermis or anorectal epithelium. Vaccine 17, 3171–3176.

    Article  CAS  PubMed  Google Scholar 

  109. FitzGerald, D., and Mrsny, R. J. (2000) New approaches to antigen delivery. Crit Rev Ther Drug Carrier Syst 17, 1405–1412.

    Google Scholar 

  110. Donnelly, J. J., Ulmer, J. B., Shiver, J. W., and Liu, M. A. (1997) DNA vaccines. Annu Rev Immunol 15, 617–648.

    Article  CAS  PubMed  Google Scholar 

  111. Schultz, J., Dollenmaier, G., and Mölling, K. (2000) Update on antiviral DNA vaccine research (1998–2000). Intervirology 43, 197–217.

    Article  CAS  PubMed  Google Scholar 

  112. Sha, Z., Vincent, M. J., and Compans, R. W. (1999) Enhancement of mucosal immune responses to the influenza virus HA protein by alternative approaches to DNA immunization. Immunobiology 200, 21–30.

    CAS  PubMed  Google Scholar 

  113. Manochaa, M., Pala, P. C., Chitralekhaa, K. T., Thomasa, B. E., Tripathia, V., Guptab, S. D., Paranjapec, R., Kulkarnic, S., and Rao, D. N. (2005) Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex Europaeus-I lectin as M cell target. Vaccine 23, 5599–5617.

    Article  CAS  Google Scholar 

  114. Janes, K. A., Calvo, P., and Alonso, M. J. (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47, 83–97.

    Article  CAS  PubMed  Google Scholar 

  115. Isaka, M., Yasuda, Y., Mizokami, M., Kozuka, S., Taniguchi, T., Matano, K., Maeyama, J., Mizuno, K., Morokuma, K., Ohkuma, K., Goto, N., and Tochikubo, K. (2001) Mucosal immunization against hepatitis B virus by intranasal co-administration of recombinant hepatitis B surface antigen and recombinant cholera toxin B subunit as an adjuvant. Vaccine 19, 1460–1466.

    Article  CAS  PubMed  Google Scholar 

  116. Tafaghodi, M., Jaafari, M. R., and Tabassi, S. A. S. (2006) Nasal immunization studies using liposomes loaded with tetanus toxoid and CpG-ODN. Eur J Pharm Biopharm 64, 138–145.

    Article  CAS  PubMed  Google Scholar 

  117. Alpar, H. O., Bowen, J. C., and Brown, M. R. W. (1992) Effectiveness of liposomes as adjuvant of orally and nasally administered tetanus toxoid. Int J Pharm 88, 335–344.

    Article  CAS  Google Scholar 

  118. Wang, D., Christopher, M. E., Nagata, L. P., Zabielski, M. A., Li, H., Wong, J. P., and Samuel, J. (2004) Intranasal immunization with liposome encapsulated plasmid DNA encoding influenza virus hemagglutinin elicits mucosal, cellular and humoral immune responses. Clin Virol 31, 99–106.

    Article  CAS  Google Scholar 

  119. Ninomiya, A., Ogasawara, K., Kajino, K., Takada, A., and Kida, H. (2002) Intranasal administration of a synthetic peptide vaccine encapsulated in liposome together with an anti-CD40 antibody induces protective immunity against influenza A virus in mice. Vaccine 20, 3123–3129.

    Article  CAS  PubMed  Google Scholar 

  120. Perrie, Y., Frederik, P. M., and Gregoriadis, G. (2001) Liposome-mediated DNA vaccination: the effect of vesicle composition. Vaccine 19, 3301–3310.

    Article  CAS  PubMed  Google Scholar 

  121. Mannino, R. J., Canki, M., Feketeova, E., Scolpino, A. J., Wang, Z., Zhang, F., Kheiri, M. T., and Gould-Fogerite, S. (1998) Targeting immune response induction with cochleate and liposome-based vaccines. Adv Drug Deliv Rev 32, 273–287.

    Article  PubMed  Google Scholar 

  122. Aramaki, Y., Fuiji, Y., Yachi, K., Kikuchi, H., and Tsuchiya, S. (1994) Activation of systemic and mucosal immune response following nasal administration of liposomes. Vaccine 12, 1241–1245.

    Article  CAS  PubMed  Google Scholar 

  123. Khatri, K., Goyal, A. K., Gupta, P. N., Mishra, N., Mehta, A., and Vyas, S. P. (2008) Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine 26, 2225–2233.

    Article  CAS  PubMed  Google Scholar 

  124. de Haan, A., Geerligs, H. J., Huchshorn, J. P., van Scharrenburg, G. J. M., Palache, A. M., and Wilschut, J. (1995) Mucosal immunoadjuvant activity of liposomes: induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with an influenza subunit vaccine and coadministered liposomes. Vaccine 13, 155–162.

    Article  PubMed  Google Scholar 

  125. Childers, N. K., Tong, G., Mitchell, S., Kirk, K., Russell, M. W., and Michalek, S. M. A. (1999) Controlled clinical study of the effect of nasal immunization with a Streptococcus mutans antigen alone or incorporated into liposomes on induction of immune responses. Infect Immun 67, 618–623.

    CAS  PubMed  Google Scholar 

  126. Baca-Estrada, M. E., Foldvari, M., Snider, M., Harding, K., Kournikakisc, B., Babiuka, L. A., and Griebela, P. (2000) Intranasal immunization with liposome-formulated Yersinia pestis vaccine enhances mucosal immune responses. Vaccine 18, 2203–2211.

    Article  CAS  PubMed  Google Scholar 

  127. Gregoriadis, G. (1990) Immunological adjuvants: a role for liposomes. Immunol Today 11, 89–97.

    Article  CAS  PubMed  Google Scholar 

  128. Glück, U., Gebbers, J. O., and Glück, R. (1999) Phase 1 evaluation of intranasal virosomal influenza vaccine with and without escherichia coli heat-labile toxin in adult volunteers. J Virol 73, 7780–7786.

    PubMed  Google Scholar 

  129. Harokopakis, E., Hajishengallis, G., and Michalek, S. M. (1998) Effectiveness of liposomes possessing surface-linked recombinant B subunit of cholera toxin as an oral antigen delivery system. Infect Immun 66, 4299–4304.

    CAS  PubMed  Google Scholar 

  130. Patel, G. B., Zhou, H., Ponce, A., and Chen, W. (2007) Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine 25, 8622–8636.

    Article  CAS  PubMed  Google Scholar 

  131. Gould-Fogerite, S., and Mannino, R. J. (2000) Cochleates for induction of mucosal and systemic immune responses. In: O’Hagan D. T., (ed.), Vaccine adjuvants: preparation methods and research protocols. Humana Press, Inc., Totowa, NJ, 179–196.

    Chapter  Google Scholar 

  132. Graff, C. L., and Pollack, G. M. (2005) Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci 94, 1187–1195.

    Article  CAS  PubMed  Google Scholar 

  133. Thorne, R. G., Emory, C. R., Ala, T. A., and Frey, W. H. (1995) Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res 692, 278–282.

    Article  CAS  PubMed  Google Scholar 

  134. Mathison, S., Nagilla, R., and Kompella, U. B. (1998) Nasal route for direct delivery of solutes to the central nervous system: factor fiction? J Drug Target 5, 415–441.

    Article  CAS  PubMed  Google Scholar 

  135. Yamada, T. (2004) The potential of the nasal mucosa route for emergency drug administration via a high-pressure needleless injection system. Anesth Prog 51, 56–61.

    PubMed  Google Scholar 

  136. Costantino, H. R., Lisbeth, I., Brandt, G., Johnson, P. H., and Quay, S. C. (2007) Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 337, 1–24.

    Article  CAS  PubMed  Google Scholar 

  137. Bleske, B. E., Warren, E. W., Rice, T. L., Shea, M. J., Amidon, G., and Knight, P. (1992) Comparison of intravenous and intranasal administration of epinephrine during CPR in a canine model. Ann Emerg Med 21, 1125–1130.

    Article  CAS  PubMed  Google Scholar 

  138. van den Berg, M. P., Verhoef, J. C., Romeijn, S. G., and Merkus, F. W. H. M. (2004) Uptake of estradiol or progesterone into the CSF following intranasal and intravenous delivery in rats. Eur J Pharm Sci 58, 131–135.

    Google Scholar 

  139. Gavini, E., Hegge, A. B., Rassu, G., Sanna, V., Testa, C., Pirisino, G., Karlsen, J., and Giunchedi, P. (2006) Nasal administration of carbamazepine using chitosan microspheres: in vitro/in vivo studies. Int J Pharm 3, 9–15.

    Article  CAS  Google Scholar 

  140. Chemuturi, N. V., and Donovan, M. D. (2007) Role of organic cation transporters in dopamine uptake across olfactory and nasal respiratory tissues. Mol Pharm 4, 936–942.

    Article  CAS  PubMed  Google Scholar 

  141. Kumar, M., Misra, A., Babbar, A. K., Mishra, A. K., Mishra, P., and Pathak, K. (2008) Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 24, 285–291.

    Article  CAS  Google Scholar 

  142. Jogani, V. V., Shah, P. J., Mishra, P., Mishra, A. K., and Misra, A. R. (2008) Intranasal mucoadhesive microemulsion of tacrine to improve brain targeting. Alzheimer Dis Assoc Disord 22, 116–124.

    Article  CAS  PubMed  Google Scholar 

  143. Dhuria, S. V., Hanson, L. R., and Frey, W. H. (2009) Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system. J Pharmacol Exp Ther 328, 312–320.

    Article  CAS  PubMed  Google Scholar 

  144. Arumugam, K., Subramanian, G. S., Mallayasamy, S. R., Averineni, R. K., Reddy, M. S., and Udupa, N. (2008) A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm 58, 287–297.

    Article  CAS  PubMed  Google Scholar 

  145. Wattanathorn, J., Phachonpai, W., Priprem, A., and Suthiparinyanont, S. (2007) Intranasal administration of quercetin liposome decreases anxiety-like behaviour and increases spatial memory. Am J Agric Biol Sci 2, 31–35.

    Article  Google Scholar 

  146. Priprem, A., Watanatorn, J., Sutthiparinyanont, S., Phachonpai, W., and, Muchimapura, S. (2008) Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine 4, 70–78.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alsarra, I.A., Hamed, A.Y., Alanazi, F.K., El Maghraby, G.M. (2010). Vesicular Systems for Intranasal Drug Delivery. In: Jain, K. (eds) Drug Delivery to the Central Nervous System. Neuromethods, vol 45. Humana Press. https://doi.org/10.1007/978-1-60761-529-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-529-3_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-528-6

  • Online ISBN: 978-1-60761-529-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics