Skip to main content

Disruption of Blood–Brain Barrier by Focused Ultrasound for Targeted Drug Delivery to the Brain

  • Protocol
  • First Online:
Drug Delivery to the Central Nervous System

Part of the book series: Neuromethods ((NM,volume 45))

Abstract

A major challenge to drug delivery in the brain is caused by the blood–brain barrier (BBB), a composite of endothelial structures that exclude over 98% of small-molecule drugs and almost 100% of large-molecule neurotherapeutics from being transmitted to the brain. Current strategies for overcoming the BBB are either invasive, non-targeted, or demonstrating limited carrying capacity. Alternatively, non-invasive, transient, and local, image-guided blood–brain barrier disruption (BBBD) can be accomplished using focused ultrasound (FUS) exposure with intravascular injection of pre-formed microbubbles. Low-intensity FUS administered with microbubble-based ultrasound (US) contrast agents has been shown to transiently disrupt the BBB, allowing agents into the brain over several hours. Evaluation in vivo using MRI-guided FUS showed minimal adverse effects, as compared to invasive interventions. Electron microscopy indicated FUS activated trans-cellular transport, and reversibly affected tight junctions. Transient disruption of the BBB allowed delivery of both small-molecule drugs (Doxorubicin) and large-molecule antibody-based chemotherapeutic (Herceptin). The FUS-induced BBB disruption also allowed delivery of both molecular imaging and therapeutic agents directly to amyloid plaques in Alzheimer’s disease mouse models. A detailed description of the method for MRI-guided focal BBBD in animals will be described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hynynen, K., McDannold, N., Vykhodtseva, N., and Jolesz, F.A., Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits, Radiology, 220 (2001) 640–646.

    Article  CAS  PubMed  Google Scholar 

  2. Hynynen, K., McDannold, N., Sheikov, N.A., Jolesz, F.A., and Vykhodtseva, N., Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications, NeuroImage, 24 (2005) 12–20.

    Article  PubMed  Google Scholar 

  3. Hynynen, K., McDannold, N., Vykhodtseva, N., Raymond, S., Weissleder, R., Jolesz, F.A., and Sheikov, N., Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery, J. Neurosurg., 105 (2006) 445–454.

    Article  CAS  PubMed  Google Scholar 

  4. Kinoshita, M., McDannold, N., Jolesz, F.A., and Hynynen, K., Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption, Proc. Natl. Acad. Sci. U. S. A., 103 (2006) 11719–11723.

    Article  CAS  PubMed  Google Scholar 

  5. Kinoshita, M., McDannold, N., Jolesz, F.A., and Hynynen, K., Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound, Biochem. Biophys. Res. Commun., 340 (2006) 1085–1090.

    Article  CAS  PubMed  Google Scholar 

  6. Sheikov, N., McDannold, N., Vykhodtseva, N., Jolesz, F., and Hynynen, K., Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles, Ultrasound Med. Biol., 30 (2004) 979–989.

    Article  PubMed  Google Scholar 

  7. Sheikov, N., McDannold, N., Jolesz, F., Zhang, Y.Z., Tam, K., and Hynynen, K., Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood-brain barrier, Ultrasound Med. Biol., 32 (2006) 1399–1409.

    Article  PubMed  Google Scholar 

  8. Treat, L.H., McDannold, N., Vykhodtseva, N., Zhang, Y., Tam, K., and Hynynen, K., Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound, Int. J. Cancer, 121 (2007) 901–907.

    Article  CAS  PubMed  Google Scholar 

  9. Choi, J.J., Pernot, M., Small, S.A., and Konofagou, E.E., Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice, Ultrasound Med. Biol., 33 (2007) 95–104.

    Article  PubMed  Google Scholar 

  10. Yang, F.Y., Fu, W.M., Yang, R.S., Liou, H.C., Kang, K.H., and Lin, W.L., Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption, Ultrasound Med. Biol., 33 (2007) 1421–1427.

    Article  PubMed  Google Scholar 

  11. Hynynen, K., Clement, G.T., McDannold, N., Vykhodtseva, N., King, R., White, P.J., Vitek, S., and Jolesz, F.A., 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls, Magn. Reson. Med., 52 (2004) 100–107.

    Article  PubMed  Google Scholar 

  12. Aubry, J.F., Tanter, M., Pernot, M., Thomas, J.L., and Fink, M., Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans, J. Acoust. Soc. Am., 113 (2003) 84–93.

    Article  CAS  PubMed  Google Scholar 

  13. Pernot, M., Aubry, J.F., Tanter, M., Thomas, J.L., and Fink, M., High power transcranial beam steering for ultrasonic brain therapy, Phys. Med. Biol., 48 (2003) 2577–2589.

    Article  CAS  PubMed  Google Scholar 

  14. Lele, P.P., Advanced ultrasonic techniques for local tumor hyperthermia, Radiol. Clin. North Am., 27 (1989) 559–575.

    CAS  PubMed  Google Scholar 

  15. Hynynen, K. and Lulu, B.A., Hyperthermia in cancer treatment, Invest. Radiol., 25 (1990) 824–834.

    Article  CAS  PubMed  Google Scholar 

  16. Diederich, C.J. and Hynynen, K., Ultrasound technology for hyperthermia, Ultrasound Med. Biol., 25 (1999) 871–887.

    Article  CAS  PubMed  Google Scholar 

  17. Arthur, R.M., Straube, W.L., Trobaugh, J.W., and Moros, E.G., Non-invasive estimation of hyperthermia temperatures with ultrasound, Int. J. Hyperthermia, 21 (2005) 589–600.

    Article  CAS  PubMed  Google Scholar 

  18. Fennessy, F.M. and Tempany, C.M., MRI-guided focused ultrasound surgery of uterine leiomyomas, Acad. Radiol., 12 (2005) 1158–1166.

    Article  PubMed  Google Scholar 

  19. Fennessy, F.M., Tempany, C.M., McDannold, N.J., So, M.J., Hesley, G., Gostout, B., Kim, H.S., Holland, G.A., Sarti, D.A., Hynynen, K., Jolesz, F.A., and Stewart, E.A., Uterine leiomyomas: MR imaging-guided focused ultrasound surgery – results of different treatment protocols, Radiology, 243 (2007) 885–893.

    Article  PubMed  Google Scholar 

  20. Rabinovici, J., Inbar, Y., Revel, A., Zalel, Y., Gomori, J.M., Itzchak, Y., Schiff, E., and Yagel, S., Clinical improvement and shrinkage of uterine fibroids after thermal ablation by magnetic resonance-guided focused ultrasound surgery, Ultrasound Obstet. Gynecol., 30 (2007) 771–777.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, L., Chen, W.Z., Liu, Y.J., Hu, X., Zhou, K., Chen, L., Peng, S., Zhu, H., Zou, H.L., Bai, J., and Wang, Z.B., Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus, Eur. J. Radiol., (2008).

    Google Scholar 

  22. Hesley, G.K., Gorny, K.R., Henrichsen, T.L., Woodrum, D.A., and Brown, D.L., A clinical review of focused ultrasound ablation with magnetic resonance guidance: an option for treating uterine fibroids, Ultrasound Q., 24 (2008) 131–139.

    Article  PubMed  Google Scholar 

  23. Fukunishi, H., Funaki, K., Sawada, K., Yamaguchi, K., Maeda, T., and Kaji, Y., Early results of magnetic resonance-guided focused ultrasound surgery of adenomyosis: analysis of 20 cases, J. Minim. Invasive. Gynecol., 15 (2008) 571–579.

    Article  PubMed  Google Scholar 

  24. Yang, Z., Cao, Y.D., Hu, L.N., and Wang, Z.B., Feasibility of laparoscopic high-intensity focused ultrasound treatment for patients with uterine localized adenomyosis, Fertil. Steril. (2008).

    Google Scholar 

  25. Funaki, K., Fukunishi, H., Funaki, T., and Kawakami, C., Mid-term outcome of magnetic resonance-guided focused ultrasound surgery for uterine myomas: from six to twelve months after volume reduction, J. Minim. Invasive. Gynecol., 14 (2007) 616–621.

    Article  PubMed  Google Scholar 

  26. Furusawa, H., Namba, K., Thomsen, S., Akiyama, F., Bendet, A., Tanaka, C., Yasuda, Y., and Nakahara, H., Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness, J. Am. Coll. Surg., 203 (2006) 54–63.

    Article  PubMed  Google Scholar 

  27. Wu, F., Wang, Z.B., Cao, Y.D., Xu, Z.L., Zhou, Q., Zhu, H., and Chen, W.Z., Heat fixation of cancer cells ablated with high-intensity-focused ultrasound in patients with breast cancer, Am. J. Surg., 192 (2006) 179–184.

    Article  PubMed  Google Scholar 

  28. Wu, F., ter Haar, G., and Chen, W.R., High-intensity focused ultrasound ablation of breast cancer, Expert. Rev. Anticancer Ther., 7 (2007) 823–831.

    Article  PubMed  Google Scholar 

  29. Hacker, A., Michel, M.S., Marlinghaus, E., Kohrmann, K.U., and Alken, P., Extracorporeally induced ablation of renal tissue by high-intensity focused ultrasound, BJU Int., 97 (2006) 779–785.

    Article  PubMed  Google Scholar 

  30. Klingler, H.C., Susani, M., Seip, R., Mauermann, J., Sanghvi, N., and Marberger, M.J., A novel approach to energy ablative therapy of small renal tumours: laparoscopic high-intensity focused ultrasound, Eur. Urol., 53 (2008) 810–816.

    Article  PubMed  Google Scholar 

  31. Kohrmann, K.U., Michel, M.S., Gaa, J., Marlinghaus, E., and Alken, P., High intensity focused ultrasound as noninvasive therapy for multilocal renal cell carcinoma: case study and review of the literature, J. Urol., 167 (2002) 2397–2403.

    Article  PubMed  Google Scholar 

  32. Erce, C. and Parks, R.W., Interstitial ablative techniques for hepatic tumours, Br. J. Surg., 90 (2003) 272–289.

    Article  CAS  PubMed  Google Scholar 

  33. Okada, A., Murakami, T., Mikami, K., Onishi, H., Tanigawa, N., Marukawa, T., and Nakamura, H., A case of hepatocellular carcinoma treated by MR-guided focused ultrasound ablation with respiratory gating, Magn. Reson. Med. Sci., 5 (2006) 167–171.

    Article  PubMed  Google Scholar 

  34. Barqawi, A.B. and Crawford, E.D., Emerging role of HIFU as a noninvasive ablative method to treat localized prostate cancer, Oncology (Williston. Park), 22 (2008) 123–129.

    Google Scholar 

  35. Muto, S., Yoshii, T., Saito, K., Kamiyama, Y., Ide, H., and Horie, S., Focal therapy with high-intensity-focused ultrasound in the treatment of localized prostate cancer, Jpn. J. Clin. Oncol., 38 (2008) 192–199.

    Article  PubMed  Google Scholar 

  36. Koch, M.O., Gardner, T., Cheng, L., Fedewa, R.J., Seip, R., and Sanghvi, N.T., Phase I/II trial of high intensity focused ultrasound for the treatment of previously untreated localized prostate cancer, J. Urol., 178 (2007) 2366–2370.

    Article  PubMed  Google Scholar 

  37. Rouviere, O., Souchon, R., Salomir, R., Gelet, A., Chapelon, J.Y., and Lyonnet, D., Transrectal high-intensity focused ultrasound ablation of prostate cancer: effective treatment requiring accurate imaging, Eur. J. Radiol., 63 (2007) 317–327.

    Article  PubMed  Google Scholar 

  38. Wu, F., Wang, Z.B., Zhu, H., Chen, W.Z., Zou, J.Z., Bai, J., Li, K.Q., Jin, C.B., Xie, F.L., and Su, H.B., Feasibility of US-guided high-intensity focused ultrasound treatment in patients with advanced pancreatic cancer: initial experience, Radiology, 236 (2005) 1034–1040.

    Article  PubMed  Google Scholar 

  39. Catane, R., Beck, A., Inbar, Y., Rabin, T., Shabshin, N., Hengst, S., Pfeffer, R.M., Hanannel, A., Dogadkin, O., Liberman, B., and Kopelman, D., MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases – preliminary clinical experience, Ann. Oncol., 18 (2007) 163–167.

    Article  CAS  PubMed  Google Scholar 

  40. Liberman, B., Gianfelice, D., Inbar, Y., Beck, A., Rabin, T., Shabshin, N., Chander, G., Hengst, S., Pfeffer, R., Chechick, A., Hanannel, A., Dogadkin, O., and Catane, R., Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study, Ann. Surg. Oncol., 16 (2009) 140–146.

    Article  PubMed  Google Scholar 

  41. Clement, G.T. and Hynynen, K., A non-invasive method for focusing ultrasound through the human skull, Phys. Med. Biol., 47 (2002) 1219–1236.

    Article  CAS  PubMed  Google Scholar 

  42. Pernot, M., Aubry, J.F., Tanter, M., Marquet, F., Montaldo, G., Boch, A.L., Kujas, M., Seilhean, D., and Fink, M., High power phased array prototype for clinical high intensity focused ultrasound: applications to transcostal and transcranial therapy. Conf. Proc. IEEE Eng Med Biol Soc. (2007), 234–237.

    Google Scholar 

  43. Nyborg, W.L., Biological effects of ultrasound: development of safety guidelines. Part II: general review, Ultrasound Med. Biol., 27 (2001) 301–333.

    Article  CAS  PubMed  Google Scholar 

  44. Hsieh, D.Y. and Plesset, M.S., Theory of rectified diffusion of mass into gas bubbles, J. Acoust. Soc. Am., 33 (1961) 206–211.

    Article  Google Scholar 

  45. Nyborg, W.L. and Acoustic, S. In: W.P. Mason (Ed.), Physical Acoustics, Vol. 2B, Academic Press, New York (1965).

    Google Scholar 

  46. Miller, D.L., A review of the ultrasonic bioeffects of microsonation, gas-body activation, and related cavitation-like phenomena, Ultrasound Med. Biol., 13 (1987) 443–470.

    Article  CAS  PubMed  Google Scholar 

  47. Krizanac-Bengez, L., Mayberg, M.R., and Janigro, D., The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology, Neurol. Res., 26 (2004) 846–853.

    Article  CAS  PubMed  Google Scholar 

  48. Leighton, T. The Acoustic Bubble, Academic Press, San Diego, CA (1994).

    Google Scholar 

  49. Mihran, R.T., Barnes, F.S., and Wachtel, H., Transient modification of nerve excitability in vitro by single ultrasound pulses, Biomed. Sci. Instrum., 26 (1990) 235–246.

    CAS  PubMed  Google Scholar 

  50. Hamill, O.P., Twenty odd years of stretch-sensitive channels, Pflugers Arch., 453 (2006) 333–351.

    Article  CAS  PubMed  Google Scholar 

  51. Edmonds, P.D. and Sancier, K.M., Evidence for free radical production by ultrasonic cavitation in biological media, Ultrasound Med. Biol., 9 (1983) 635–639.

    Article  CAS  PubMed  Google Scholar 

  52. Apfel, R.E., Acoustic cavitation: a possible consequence of biomedical uses of ultrasound, Br. J. Cancer. Suppl., 45 (1982) 140–146.

    Google Scholar 

  53. Flynn, H.G., Generation of transient cavities in liquids by microsecond pulses of ultrasound, J. Acoust. Soc. Am., 72 (1982) 1926–1932.

    Article  Google Scholar 

  54. Duck, F.A. Physical Properties of Tissue, Academic Press Inc., New York (1990).

    Google Scholar 

  55. Treat, L.H.. Advances in targeted chemotherapy using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PhD Thesis, Massachusetts Institute of Technology, USA. 2009.

    Google Scholar 

  56. Hynynen, K., Macromolecular delivery across the blood-brain barrier, Methods Mol. Biol., 480 (2009) 175–185.

    CAS  PubMed  Google Scholar 

  57. Goss, S.A., Johnston, R.L., and Dunn, F., Comprehensive compilation of empirical ultrasonic properties of mammalian tissues, J. Acoust. Soc. Am., 64 (1978) 423–457.

    Article  CAS  PubMed  Google Scholar 

  58. Hynynen, K., Vykhodtseva, N.I., Chung, A.H., Sorrentino, V., Colucci, V., and Jolesz, F.A., Thermal effects of focused ultrasound on the brain: determination with MR imaging, Radiology, 204 (1997) 247–253.

    CAS  PubMed  Google Scholar 

  59. Ishihara, Y., Calderon, A., Watanabe, H., Okamoto, K., Suzuki, Y., and Kuroda, K., A precise and fast temperature mapping using water proton chemical shift, Magn. Reson. Med., 34 (1995) 814–823.

    Article  CAS  PubMed  Google Scholar 

  60. Hindman, J.C., Proton resonance shift of water in the gas and liquid states, J. Chem. Phys., 44 (1966) 4582–4592.

    Article  CAS  Google Scholar 

  61. Bakay, L., Hueter, T.F., Ballantine, H.T. Jr., and Sosa, D., Ultrasonically produced changes in the blood-brain barrier, Arch. Neurol. Psychat., 76 (1956) 457–467.

    CAS  Google Scholar 

  62. Treat, L.H., Zhang, Y., McDannold, N., and Hynynen, K.. Impact of focused ultrasound-enhanced drug delivery on survival in rats with glioma. Proceedings of the 8th International Symposium on Therapeutic Ultrasound./Minneapolis, Minnesota, USA. Ebbini, E. S. 2008.

    Google Scholar 

  63. Treat, L.H., Zhang, Y., McDannold, N., and Hynynen, K., MRI-guided focused ultrasound enhanced chemotherapy of 9L rat gliosarcoma: Survival study. Proceedings of the 16th Scientific Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine. Toronto, Ontario, Canada. 2008:71.

    Google Scholar 

  64. Raymond, S.B., Treat, L.H., Dewey, J.D., McDannold, N.J., Hynynen, K., and Bacskai, B.J., Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models, PLoS. ONE., 3 (2008) e2175.

    Article  PubMed  Google Scholar 

  65. Stan, A.C., Casares, S., Radu, D., Walter, G.F., and Brumeanu, T.D., Doxorubicin-induced cell death in highly invasive human gliomas, Anticancer Res., 19 (1999) 941–950.

    CAS  PubMed  Google Scholar 

  66. Gupta, B. and Torchilin, V.P., Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice, Cancer Immunol. Immunother., 56 (2007) 1215–1223.

    Article  CAS  PubMed  Google Scholar 

  67. Cummings, J. and McArdle,C.S., Studies on the in vivo disposition of adriamycin in human tumours which exhibit different responses to the drug, Br. J Cancer, 53 (1986) 835–838.

    Google Scholar 

  68. Benz, C.C., O‘Hagan, R.C., Richter, B., Scott, G.K., Chang, C.H., Xiong, X., Chew, K., Ljung, B.M., Edgerton, S., Thor, A., and Hassell, J.A., HER2/Neu and the Ets transcription activator PEA3 are coordinately upregulated in human breast cancer, Oncogene, 15 (1997) 1513–1525.

    Article  CAS  PubMed  Google Scholar 

  69. Sheikov, N., McDannold, N., Sharma, S., and Hynynen, K., Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium, Ultrasound Med. Biol., 34 (2008) 1093–1104.

    Article  PubMed  Google Scholar 

  70. Raymond, S.B., Skoch, J., Bacskai, B.J., and Hynynen, K., Modular design for in vivo optical imaging and ultrasound treatment in the murine brain, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54 (2007) 431–434.

    Article  PubMed  Google Scholar 

  71. Raymond, S.B., Skoch, J., Hynynen, K., and Bacskai, B.J., Multiphoton imaging of ultrasound/Optison mediated cerebrovascular effects in vivo, J. Cereb. Blood Flow Metab., 27 (2007) 393–403.

    Article  CAS  PubMed  Google Scholar 

  72. Cline, H.E., Schenck, J.F., Watkins, R.D., Hynynen, K., and Jolesz, F.A., Magnetic resonance-guided thermal surgery, Magn. Reson. Med., 30 (1993) 98–106.

    Article  CAS  PubMed  Google Scholar 

  73. Hynynen, K., Darkazanli, A., Unger, E., and Schenck, J.F., MRI-guided noninvasive ultrasound surgery, Med. Phys., 20 (1993) 107–115.

    Article  CAS  PubMed  Google Scholar 

  74. Cline, H.E., Hynynen, K., Watkins, R.D., Adams, W.J., Schenck, J.F., Ettinger, R.H., Freund, W.R., Vetro, J.P., and Jolesz, F.A., Focused US system for MR imaging-guided tumor ablation, Radiology, 194 (1995) 731–737.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01EB003268, R33EB000705, U41RR019703.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vykhodtseva, N. (2010). Disruption of Blood–Brain Barrier by Focused Ultrasound for Targeted Drug Delivery to the Brain. In: Jain, K. (eds) Drug Delivery to the Central Nervous System. Neuromethods, vol 45. Humana Press. https://doi.org/10.1007/978-1-60761-529-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-529-3_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-528-6

  • Online ISBN: 978-1-60761-529-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics