Skip to main content

Ca2+ Imaging of Intracellular Organelles: Mitochondria

  • Protocol
  • First Online:
  • 1000 Accesses

Part of the book series: Neuromethods ((NM,volume 43))

Abstract

Calcium handling by mitochondria is important both because mitochondria can shape the cytosolic Ca2+ signals and because changes in mitochondrial Ca2+ concentration ([Ca2+]M) are important for controlling physiological functions such as respiration or programmed cell death. Accurate measurements of [Ca2+]M require selective location of the Ca2+ probe inside mitochondria and this is best achieved by targeting protein probes to the mitochondrial matrix. Aequorins are very adequate as Ca2+probes because: (1) they allow molecular engineering for targeting or for changing the Ca2+ affinity; (2) do not require irradiation for measurements; (3) Ca2+ buffering is small; (4) have a very steep Ca2+-dependence and a very wide dynamic range, which makes them ideal for detecting and quantifying Ca2+ microdomains. Consumption and low light output are some of its drawbacks that make calcium imaging a hard task. Here, we describe a procedure that overcomes these disadvantages by combining herpes simplex virus type 1(HSV-1)-based expression of targeted aequorins with photon-counting imaging. This methodology allows real-time resolution of changes of [Ca2+]M by photon counting imaging at the single-cell level. Since HSV virus is neurotrophic, the method is adequate for measuring [Ca2+]M in living neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alvarez J, Montero M, Garcia-Sancho J (1999) Subcellular Ca2+ dynamics. News Physiol Sci 14:161–168

    CAS  PubMed  Google Scholar 

  2. Petersen OH, Tepikin AV (2008) Polarized calcium signaling in exocrine gland cells. Annu Rev Physiol 70:273–299

    Article  CAS  PubMed  Google Scholar 

  3. Alonso MT, Villalobos C, Chamero P, Alvarez J, Garcia-Sancho J (2006) Calcium microdomains in mitochondria and nucleus. Cell Calcium 40:513–525

    Article  CAS  PubMed  Google Scholar 

  4. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    CAS  PubMed  Google Scholar 

  5. Csordas G, Thomas AP, Hajnoczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18:96–108

    Article  CAS  PubMed  Google Scholar 

  6. Hajnoczky G, Csordas G, Madesh M, Pacher P (2000) The machinery of local Ca2+ signalling between sarco-endoplasmic reticulum and mitochondria. J Physiol (London) 529:69–81

    Article  CAS  Google Scholar 

  7. Montero M, Alonso MT, Carnicero E, Cuchillo-Ibáñez I, Albillos A, García AG, García-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2:57–61

    Article  CAS  PubMed  Google Scholar 

  8. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    Article  CAS  PubMed  Google Scholar 

  9. Rizzuto R, Pinton P, Carrington W, Faym FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  CAS  PubMed  Google Scholar 

  10. Villalobos C, Nuñez L, Montero M, García AG, Alonso MT, Chamero P, Alvarez J, García-Sancho J (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16:343–353

    Article  CAS  PubMed  Google Scholar 

  11. Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424

    Article  CAS  PubMed  Google Scholar 

  12. Pralong WF, Spat A, Wollheim CB (1994) Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem 269:27310–27314

    CAS  PubMed  Google Scholar 

  13. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 96:13807–13812

    Article  CAS  PubMed  Google Scholar 

  14. Maechler P, Wollheim CB (2000) Mito­chondrial signals in glucose-stimulated insulin secretion in the beta cell. J Physiol (London) 529:49–56

    Article  CAS  Google Scholar 

  15. Szabadkai G, Duchen MR (2008) Mito­chondria: the hub of cellular Ca2+ signaling. Physiology (Bethesda) 23:84–94

    CAS  Google Scholar 

  16. Voronina S, Sukhomlin T, Johnson PR, Erdemli G, Petersen OH, Tepikin A (2002) Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells. J Physiol (London) 539:41–52

    Article  CAS  Google Scholar 

  17. Gunter TE, Restrepo D, Gunter KK (1988) Conversion of esterified fura-2 and indo-1 to Ca2+-sensitive forms by mitochondria. Am J Physiol 255:C304–C310

    CAS  PubMed  Google Scholar 

  18. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  CAS  PubMed  Google Scholar 

  19. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  20. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA 98:3197–3202

    Article  CAS  PubMed  Google Scholar 

  21. Palmer AE, Tsien RY (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1:1057–1065

    Article  CAS  PubMed  Google Scholar 

  22. Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327

    Article  CAS  PubMed  Google Scholar 

  23. Shimomura O, Musicki B, Kishi Y, Inouye S (1993) Light-emitting properties of recombinant semi-synthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium. Cell Calcium 14:373–378

    Article  CAS  PubMed  Google Scholar 

  24. Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di Lisa F, Pozzan T (2001) (2001) Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J 20:4998–5007

    Article  CAS  PubMed  Google Scholar 

  25. Shimomura O, Johnson FH, Saiga Y (1963) Microdetermination of calcium by aequorin luminescence. Science 140:1339–1340

    Article  CAS  PubMed  Google Scholar 

  26. Inouye S, Noguchi M, Sakaki Y, Takagi Y, Miyata T, Iwanaga S, Miyata T, Tsuji FI (1985) Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc Natl Acad Sci USA 82:3154–3158

    Article  CAS  PubMed  Google Scholar 

  27. Prasher D, McCann RO, Cormier MJ (1985) Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun 126:1259–1268

    Article  CAS  PubMed  Google Scholar 

  28. Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Recombinant aequorin as a probe for cytosolic free Ca2+ in Escherichia coli. FEBS Lett 282:405–4088

    Article  CAS  PubMed  Google Scholar 

  29. Kendall JM, Dormer RL, Campbell AK (1992) Targeting aequorin to the endoplasmic reticulum of living cells. Biochem Biophys Res Commun 189:1008–1016

    Article  CAS  PubMed  Google Scholar 

  30. Alonso MT, Barrero MJ, Michelena P, Carnicero E, Cuchillo I, García AG, García-Sancho J, Montero M, Alvarez J (1999) Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J Cell Biol 144:241–254

    Article  CAS  PubMed  Google Scholar 

  31. Barrero MJ, Montero M, Alvarez J (1997) Dynamics of [Ca2+] in the endoplasmic reticulum and cytoplasm of intact HeLa cells. A comparative study. J Biol Chem 272:27694–27699

    Article  CAS  PubMed  Google Scholar 

  32. Kendall JM, Sala-Newby G, Ghalaut V, Dormer RL, Campbell AK (1992) Engineering the Ca2+-activated photoprotein aequorin with reduced affinity for calcium. Biochem Biophys Res Commun 187:1091–1097

    Article  CAS  PubMed  Google Scholar 

  33. Kendall JM, Sala-Newby G, Ghalaut V, Dormer RL, Campbell AK (1992) Engineering aequorin to measure Ca2+ in defined compartments of living cells. Biochem Soc Trans 20:144S

    CAS  PubMed  Google Scholar 

  34. Geller AI, Breakfield XO (1988) Defective HSV-1 vector expresses Escherichia coli β-galactosidase in cultured peripheral neurons. Science 241:1667–1669

    Article  CAS  PubMed  Google Scholar 

  35. Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brulet P (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci USA 97:7260–7265

    Article  CAS  PubMed  Google Scholar 

  36. Curie T, Rogers KL, Colasante C, Brulet P (2007) Red-shifted aequorin-based bioluminescent reporters for in vivo imaging of Ca2+ signaling. Mol Imaging 6:30–42

    CAS  PubMed  Google Scholar 

  37. Manjarrés IM, Chamero P, Domingo B, Molina F, Llopis J, Alonso MT, García-Sancho J (2008) Red and green aequorins for simultaneous monitoring of Ca2+ signals from two different organelles. Pflugers Arch 455:961–970

    Article  PubMed  Google Scholar 

  38. Villalobos C, Núñez L, Chamero P, Alonso MT, García-Sancho J (2001) Mitochondrial [Ca2+] oscillations driven by local high [Ca2+] domains generated by spontaneous electric activity. J Biol Chem 276:40293–40297

    CAS  PubMed  Google Scholar 

  39. Montero M, Brini M, Marsault R, Alvarez J, Sitia R, Pozzan T, Rizzuto R (1995) Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J 14:5467–5475

    CAS  PubMed  Google Scholar 

  40. Neve R, Lim F (2001) Overview of gene delivery into cells using HSV-1-based vectors. Curr Protoc Neurosci 4, Unit 4.12

    Google Scholar 

  41. Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci USA 76:514–517

    Article  CAS  PubMed  Google Scholar 

  42. Núñez L, Sánchez A, Fonteriz RI, García-Sancho J (1996) Mechanisms for synchronous calcium oscillations in cultured rat cerebellar neurons. Eur J Neurosci 8:192–201

    Article  PubMed  Google Scholar 

  43. Martínez JA, Lamas JA, Gallego R (2002) Calcium current components in intact and dissociated adult mouse sympathetic neurons. Brain Res 951:227–236

    Article  Google Scholar 

  44. Villalobos C, Nuñez L, Frawley LS, García-Sancho J, Sánchez A (1997) Multiresponsiveness of single anterior pituitary cells to hypothalamic-releasing hormones: a cellular basis for paradoxical secretion. Proc Natl Acad Sci USA 94:14132–14137

    Article  CAS  PubMed  Google Scholar 

  45. Schlegel W, Winiger BP, Mollard P, Vacher P, Wuarin F, Zahnd GR, Wollheim CB, Dufy B (1987) Oscillations of cytosolic Ca2+ in pituitary cells due to action potentials. Nature 329:719–721

    Article  CAS  PubMed  Google Scholar 

  46. Allen DG, Blinks JR, Prendergast FG (1977) Aequorin luminescence: relation of light emission to calcium concentration a calcium-independent component. Science 195:996–998

    Article  CAS  PubMed  Google Scholar 

  47. Alvarez J, Montero M (2002) Measuring [Ca 2+] in the endoplasmic reticulum with aequorin. Cell Calcium 32:251–260

    Article  CAS  PubMed  Google Scholar 

  48. Moisescu DG, Ashley CC (1977) The effect of physiologically occurring cations upon aequorin light emission. Determination of the binding constants. Biochim Biophys Acta 460:189–205

    Article  CAS  PubMed  Google Scholar 

  49. Szanda G, Rajki A, Gallego-Sandín S, Garcia-Sancho J, Spät A (2009) Effect of cytosolic Mg2+ on mitochondrial Ca2+ signaling. Pflugers Arch 457(4):941–954

    Article  CAS  PubMed  Google Scholar 

  50. Rutter GA, Burnett P, Rizzuto R, Brini M, Murgia M, Pozzan T, Tavaré JM, Denton RM (1996) Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci USA 93:5489–5494

    Article  CAS  PubMed  Google Scholar 

  51. Alonso MT, Barrero MJ, Carnicero E, Montero M, Garcia-Sancho J, Alvarez J (1998) Functional measurements of [Ca2+] in the endoplasmic reticulum using a herpes virus to deliver targeted aequorin. Cell Calcium 24:87–96

    Article  CAS  PubMed  Google Scholar 

  52. Quesada I, Villalobos C, Nunez L, Chamero P, Alonso MT, Nadal A, Garcia-Sancho J (2008) Glucose induces synchronous mitochondrial calcium oscillations in intact pancreatic islets. Cell Calcium 43:39–47

    Article  CAS  PubMed  Google Scholar 

  53. Lopez MG, Garcia AG, Artalejo AR, Neher E, Garcia-Sancho J (1995) Veratridine induces oscillations of cytosolic calcium and membrane potential in bovine chromaffin cells. J Physiol (London) 482:15–27

    CAS  Google Scholar 

  54. Jambrina E, Alonso R, Alcalde M, del Carmen Rodríguez M, Serrano A, Martínez AC, García-Sancho J, Izquierdo M (2003) Calcium influx through receptor-operated channel induces mitochondria-triggered paraptotic cell death. J Biol Chem 278:14134–14145

    Article  CAS  PubMed  Google Scholar 

  55. Núñez L, Senovilla L, Sanz-Blasco S, Chamero P, Alonso MT, Villalobos C, García-Sancho J (2007) Bioluminescence imaging of mitochondrial Ca2+ dynamics in soma and neurites of individual adult mouse sympathetic neurons. J Physiol (London) 580:385–395

    Article  Google Scholar 

  56. Rogers KL, Stinnakre J, Agulhon C, Jublot D, Shorte SL, Kremer EJ, Brûlet P (2005) Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. Eur J Neurosci 21:597–610

    Article  PubMed  Google Scholar 

  57. Greenwood SM, Connolly CN (2007) Dendritic and mitochondrial changes during glutamate excitotoxicity. Neuropharmacology 53:891–898

    Article  CAS  PubMed  Google Scholar 

  58. Rogers KL, Picaud S, Roncali E, Boisgard R, Colasante C, Stinnakre J, Tavitian B, Brûlet P (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2:e974

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministerio de Educación y Ciencia (grants BFU2007-60157, BFU2005-02078 and BFU2006-05202), Instituto de Salud Carlos III (PI07/0766) and the Junta de Castilla y León (VA-088/A06) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier García-Sancho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Núñez, L., Villalobos, C., Alonso, M.T., García-Sancho, J. (2010). Ca2+ Imaging of Intracellular Organelles: Mitochondria. In: Verkhratsky, A., Petersen, O. (eds) Calcium Measurement Methods. Neuromethods, vol 43. Humana Press. https://doi.org/10.1007/978-1-60761-476-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-476-0_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-475-3

  • Online ISBN: 978-1-60761-476-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics