Skip to main content

Bioluminescent Ca2+ Indicators

  • Protocol
  • First Online:
Book cover Calcium Measurement Methods

Part of the book series: Neuromethods ((NM,volume 43))

Abstract

In the last two decades, the study of Ca2+ homeostasis in living cells received a great impulse by the explosive development of genetically encoded Ca2+-indicators. The cloning of the Ca2+-sensitive photoprotein aequorin and of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has been enormously advantageous for the biologists.

As polypeptides, aequorin and GFP allow their endogenous production in cell system as diverse as bacteria, yeast, slime moulds, plants and mammalian cells. Moreover, it is possible to specifically localize them within the cell by including defined targeting signals in the amino acid sequence.

These two proteins have been extensively engineerized to obtain several recombinant probes for different biological parameters, among which Ca2+ concentration reporters are probably the most relevant. In this review, we will not treat the GFP-based Ca2+ probes, but we will present the applications offered by aequorin in the study of intracellular Ca2+ homeostasis, discussing also the new generation of bioluminescent probes that couple the Ca2+ sensitivity of aequorin to GFP fluorescence emission. In these probes, aequorin Ca2+-dependent photon emission delivers energy to the GFP acceptor in a bioluminescence resonance energy transfer (BRET): this process enhances the stability and the high signal-to noise ratio of the probes and permits real-time measurements of subcellular Ca2+ changes in single cell imaging experiments. Very recently, the development of transgenic animals expressing GFP–aequorin bi-functional probes has also permitted the video-imaging of Ca2+ concentrations changes in live animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pietrobon D (2007) Familial hemiplegic migraine. Neurotherapeutics 4(2):274–284

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  CAS  PubMed  Google Scholar 

  3. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3(11):862–872

    Article  CAS  PubMed  Google Scholar 

  4. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86(1):369–408

    Article  CAS  PubMed  Google Scholar 

  5. Shimomura O, Johnson FH (1978) Peroxi­dized coelenterazine, the active group in the photoprotein aequorin. Proc Natl Acad Sci USA 75(6):2611–2615

    Article  CAS  PubMed  Google Scholar 

  6. Morin JG, Hastings JW (1971) Energy transfer in a bioluminescent system. J Cell Physiol 77(3):313–318

    Article  CAS  PubMed  Google Scholar 

  7. Baubet V, Le Mouellic H, Campbell AK et al (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci USA 97(13):7260–7265

    Article  CAS  PubMed  Google Scholar 

  8. Brini M (2008) Calcium-sensitive photoproteins. Methods 46(3):160–166

    Article  CAS  PubMed  Google Scholar 

  9. Alonso MT, Barrero MJ, Carnicero E et al (1998) Functional measurements of [Ca2+] in the endoplasmic reticulum using a herpes virus to deliver targeted aequorin. Cell Calcium 24(2):87–96

    Article  CAS  PubMed  Google Scholar 

  10. Bano D, Young KW, Guerin CJ et al (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120(2):275–285

    Article  CAS  PubMed  Google Scholar 

  11. Kendall JM, Badminton MN, Sala-Newby GB et al (1996) Agonist-stimulated free calcium in subcellular compartments. Delivery of recombinant aequorin to organelles using a replication deficient adenovirus vector. Cell Calcium 19(2):133–142

    Article  CAS  PubMed  Google Scholar 

  12. Rembold CM, Kendall JM, Campbell AK (1997) Measurement of changes in sarcoplasmic reticulum [Ca2+] in rat tail artery with targeted apoaequorin delivered by an adenoviral vector. Cell Calcium 21(1):69–79

    Article  CAS  PubMed  Google Scholar 

  13. Lim D, Fedrizzi L, Tartari M et al (2008) Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem 283(9):5780–5789

    Article  CAS  PubMed  Google Scholar 

  14. Rogers KL, Picaud S, Roncali E et al (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2(10):e974

    Article  PubMed  Google Scholar 

  15. Yamano K, Mori K, Nakano R et al (2007) Identification of the functional expression of adenosine A3 receptor in pancreas using transgenic mice expressing jellyfish apoaequorin. Transgenic Res 16(4):429–435

    Article  CAS  PubMed  Google Scholar 

  16. Head JF, Inouye S, Teranishi K et al (2000) The crystal structure of the photoprotein aequorin at 2.3 A resolution. Nature 405(6784):372–376

    Article  CAS  PubMed  Google Scholar 

  17. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  18. Allen DG, Blinks JR (1978) Calcium transients in aequorin-injected frog cardiac muscle. Nature 273(5663):509–513

    Article  CAS  PubMed  Google Scholar 

  19. Cobbold PH (1980) Cytoplasmic free calcium and amoeboid movement. Nature 285(5765):441–446

    Article  CAS  PubMed  Google Scholar 

  20. Ridgway EB, Ashley CC (1967) Calcium transients in single muscle fibers. Biochem Biophys Res Commun 29(2):229–234

    Article  CAS  PubMed  Google Scholar 

  21. Ridgway EB, Gilkey JC, Jaffe LF (1977) Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci USA 74(2):623–627

    Article  CAS  PubMed  Google Scholar 

  22. Inouye S, Noguchi M, Sakaki Y et al (1985) Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc Natl Acad Sci USA 82(10):3154–3158

    Article  CAS  PubMed  Google Scholar 

  23. Rizzuto R, Brini M, Pozzan T (1994) Targeting recombinant aequorin to specific intracellular organelles. Methods Cell Biol 40:339–358

    Article  CAS  PubMed  Google Scholar 

  24. Miller AL, Karplus E, Jaffe LF (1994) Imaging [Ca2+]i with aequorin using a photon imaging detector. Methods Cell Biol 40:305–338

    Article  CAS  PubMed  Google Scholar 

  25. Kendall JM, Dormer RL, Campbell AK (1992) Targeting aequorin to the endoplasmic reticulum of living cells. Biochem Biophys Res Commun 189(2):1008–1016

    Article  CAS  PubMed  Google Scholar 

  26. Montero M, Brini M, Marsault R et al (1995) Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J 14(22):5467–5475

    CAS  PubMed  Google Scholar 

  27. Brini M, De Giorgi F, Murgia M et al (1997) Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes. Mol Biol Cell 8(1):129–143

    CAS  PubMed  Google Scholar 

  28. Barrero MJ, Montero M, Alvarez J (1997) Dynamics of [Ca2+] in the endoplasmic reticulum and cytoplasm of intact HeLa cells. A comparative study. J Biol Chem 272(44):27694–27699

    Article  CAS  PubMed  Google Scholar 

  29. Rutter GA, Burnett P, Rizzuto R et al (1996) Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci USA 93(11):5489–5494

    Article  CAS  PubMed  Google Scholar 

  30. Brini M, Marsault R, Bastianutto C et al (1995) Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+]c). A critical evaluation. J Biol Chem 270(17):9896–9903

    Article  CAS  PubMed  Google Scholar 

  31. Brini M, Murgia M, Pasti L et al (1993) Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin. EMBO J 12(12):4813–4819

    CAS  PubMed  Google Scholar 

  32. Brini M, Marsault R, Bastianutto C et al (1994) Nuclear targeting of aequorin. A new approach for measuring nuclear Ca2+ concentration in intact cells. Cell Calcium 16(4):259–268

    Article  CAS  PubMed  Google Scholar 

  33. Rizzuto R, Simpson AW, Brini M et al (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358(6384):325–327

    Article  CAS  PubMed  Google Scholar 

  34. Rizzuto R, Pinton P, Carrington W et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280(5370):1763–1766

    Article  CAS  PubMed  Google Scholar 

  35. Marsault R, Murgia M, Pozzan T et al (1997) Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells. EMBO J 16(7):1575–1581

    Article  CAS  PubMed  Google Scholar 

  36. Sitia R, Meldolesi J (1992) Endoplasmic reticulum: a dynamic patchwork of specialized subregions. Mol Biol Cell 3(10):1067–1072

    CAS  PubMed  Google Scholar 

  37. Robert V, De Giorgi F, Massimino ML et al (1998) Direct monitoring of the calcium concentration in the sarcoplasmic and endoplasmic reticulum of skeletal muscle myotubes. J Biol Chem 273(46):30372–30378

    Article  CAS  PubMed  Google Scholar 

  38. Rogers KL, Stinnakre J, Agulhon C et al (2005) Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. Eur J Neurosci 21(3):597–610

    Article  PubMed  Google Scholar 

  39. Kendall JM, Sala-Newby G, Ghalaut V et al (1992) Engineering the CA(2+)-activated photoprotein aequorin with reduced affinity for calcium. Biochem Biophys Res Commun 187(2):1091–1097

    Article  CAS  PubMed  Google Scholar 

  40. Rogers KL, Martin JR, Renaud O et al (2008) Electron-multiplying charge-coupled detector-based bioluminescence recording of single-cell Ca2+. J Biomed Opt 13(3):031211

    Article  PubMed  Google Scholar 

  41. Curie T, Rogers KL, Colasante C et al (2007) Red-shifted aequorin-based bioluminescent reporters for in vivo imaging of Ca2 signaling. Mol Imaging 6(1):30–42

    CAS  PubMed  Google Scholar 

  42. Abraham U, Prior JL, Granados-Fuentes D et al (2005) Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro. J Neurosci 25(38):8620–8626

    Article  CAS  PubMed  Google Scholar 

  43. Hardy J, Francis KP, DeBoer M et al (2004) Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303(5659):851–853

    Article  CAS  PubMed  Google Scholar 

  44. Martin JR, Rogers KL, Chagneau C et al (2007) In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila. PLoS One 2(3):e275

    Article  PubMed  Google Scholar 

  45. Agulhon C, Platel JC, Kolomiets B et al (2007) Bioluminescent imaging of Ca2+ activity reveals spatiotemporal dynamics in glial networks of dark-adapted mouse retina. J Physiol 583(Pt 3):945–958

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to past and present collaborators and thank the University of Padova (local funding and Ateneo Project 2008), the Telethon Foundation (Project GGP04169), the Italian Ministry of University and Research (PRIN 2003 and 2005), the Italian National Research Council (CNR, Agency 2000) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Brini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fedrizzi, L., Brini, M. (2010). Bioluminescent Ca2+ Indicators. In: Verkhratsky, A., Petersen, O. (eds) Calcium Measurement Methods. Neuromethods, vol 43. Humana Press. https://doi.org/10.1007/978-1-60761-476-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-476-0_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-475-3

  • Online ISBN: 978-1-60761-476-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics