Skip to main content

Basal Ganglia Disorders in Genetic Models and Experimentally Induced Lesions

  • Protocol
  • First Online:
  • 685 Accesses

Part of the book series: Neuromethods ((NM,volume 44))

Abstract

Experimentally induced lesions of basal ganglia cause neurological anomalies such as hindlimb clasping and changes in motor activity, together with deficits in motor coordination and spatial learning. Some of these deficits have been described in mice genetically modified for Parkinson’s and Huntington’s disease. Symptoms, similar to those of neurological disorders, are found with lesions of dopaminergic neurons in murine models of Parkinson’s disease, including transgenic mice expressing mutant and wild-type SNCA encoding α-synuclein, Pitx3-deficient aphakia (ak) mice, and Park2 null mutants deficient in parkin. As with Huntington’s disease, HD transgenic and knock-in mice with variable CAG repeats have different onsets of anomalies and possess the same time-related biphasic response in motor activity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kandel ER, Schwartz JH, Jessell TM (1991) Principles of Neural Science, 3rd edn. Appleton and Lange, Norwalk, CT

    Google Scholar 

  2. DeLong MR (1993) Overview of basal ganglia function. In: Mano N, Hamada I, DeLong MR (eds) Role of the cerebellum and basal ganglia in voluntary movement. Elsevier, Amsterdam

    Google Scholar 

  3. Graybiel AM (1995) The basal ganglia. Trends Neurosci 18:60-62

    Article  PubMed  CAS  Google Scholar 

  4. Hikosaka O, Sesack SR, Lecourtier L, Shepard PD (2008) Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci 28:11825-11829

    Article  PubMed  CAS  Google Scholar 

  5. Marsden CD (1982) Basal ganglia disease. Lancet 2:1141-1147

    Article  PubMed  CAS  Google Scholar 

  6. Lee FJS, Liu F (2008) Genetic factors involved in the pathogenesis of Parkinson’s disease. Brain Res Rev 58:354-364

    Article  PubMed  CAS  Google Scholar 

  7. Langston JW, Ballard P, Tetrud JW et al (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979-980

    Article  PubMed  CAS  Google Scholar 

  8. Cooper JR, Bloom FE, Roth RH (1996) The biochemical basis of neuropharmacology, 7th edn. Oxford University Press, New York

    Google Scholar 

  9. Aarsland D, Larsen JP, Lim NG et al (1999) Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 67:492-496

    Article  PubMed  CAS  Google Scholar 

  10. Brown RG, MacCarthy B, Gotham AM et al (1988) Depression and disability in Parkinson’s disease: a follow-up of 132 cases. Psychol Med 18:49-55

    Article  PubMed  CAS  Google Scholar 

  11. Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2-8

    Article  PubMed  CAS  Google Scholar 

  12. Flowers KA, Robertson C (1985) The effect of Parkinson’s disease on the ability to maintain a mental set. J Neurol Neurosurg Psychiatry 48:517-529

    Article  PubMed  CAS  Google Scholar 

  13. Dubois B, Pillon B, Sternic N et al (1990) Age-induced cognitive disturbances in Parkinson’s disease. Neurology 40:38-41

    PubMed  CAS  Google Scholar 

  14. Cronin-Golomb A, Corkin S, Growdon JH (1994) Impaired problem solving in Parkinson’s disease: impact of a set-shifting deficit. Neuropsychologia 32:579-593

    Article  PubMed  CAS  Google Scholar 

  15. Hietanen M, Teräväinen H (1988) The effect of age of disease onset on neuropsychological performance in Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:244-249

    Article  PubMed  CAS  Google Scholar 

  16. Meco G, Gasparini M, Doricchi F (1996) Attentional functions in multiple system atrophy and Parkinson’s disease. J Neurol Neurosurg Psychiatry 60:393-398

    Article  PubMed  CAS  Google Scholar 

  17. Tsai CH, Lu CS, Hua MS et al (1994) Cognitive dysfunction in early onset parkinsonism. Acta Neurol Scand 89:9-14

    Article  PubMed  CAS  Google Scholar 

  18. Wallesch CW, Karnath HO, Papagno C et al (1990) Parkinson’s disease patient’s behaviour in a covered maze learning task. Neuropsychologia 28:839-849

    Article  PubMed  CAS  Google Scholar 

  19. Caltagirone C, Carlesimo A, Nocentini U et al (1989) Defective concept formation in parkinsonians is independent from mental deterioration. J Neurol Neurosurg Psychiatry 52:334-337

    Article  PubMed  CAS  Google Scholar 

  20. Gotham AM, Brown RG, Marsden CD (1988) ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain 111:299-321

    Article  PubMed  Google Scholar 

  21. Lees AJ, Smith E (1983) Cognitive deficits in the early stages of Parkinson’s disease. Brain 106:257-270

    Article  PubMed  Google Scholar 

  22. Levin BE, Llabre MM, Weiner WJ (1989) Cognitive impairments associated with early Parkinson’s disease. Neurology 39:557-561

    PubMed  CAS  Google Scholar 

  23. Pillon B, Ertle S, Deweer B et al (1996) Memory for spatial location is affected in Parkinson’s disease. Neuropsychologia 34:77-85

    Article  PubMed  CAS  Google Scholar 

  24. Taylor AE, Saint-Cyr JA, Lang AE (1986) Frontal lobe dysfunction in Parkinson’s disease. The cortical focus of neostriatal outflow. Brain 109:845-883

    Article  PubMed  Google Scholar 

  25. Tröster AI, Stalp LD, Paolo AM et al (1995) Neuropsychological impairment in Parkinson’s disease with and without depression. Arch Neurol 52:1164-1169

    PubMed  Google Scholar 

  26. Boyd JL, Cruickshank CA, Kenn CW et al (1991) Cognitive impairment and dementia in Parkinson’s disease: a controlled study. Psychol Med 21:911-921

    Article  PubMed  CAS  Google Scholar 

  27. Mohr E, Juncos J, Cox C et al (1990) Selective deficits in cognition and memory in high-functioning parkinsonian patients. J Neurol Neurosurg Psychiatry 53:603-606

    Article  PubMed  CAS  Google Scholar 

  28. Bowen FP, Hoehn MM, Yahr MD (1972) Parkinsonism: alterations in spatial orientation as determined by a route-walking test. Neuropsychologia 10:355-361

    Article  PubMed  CAS  Google Scholar 

  29. Bowen FP, Burns MM, Brady EM et al (1976) A note of alterations of personal orientation in Parkinsonism. Neuropsychologia 14:425-429

    Article  PubMed  CAS  Google Scholar 

  30. Soliveri P, Brown RG, Jahanshahi M et al (1997) Learning manual pursuit tracking skills in patients with Parkinson’s disease. Brain 120:1325-1337

    Article  PubMed  Google Scholar 

  31. Allain H, Lieury A, Quemener V et al (1995) Procedural memory and Parkinson’s disease. Dementia 6:174-178

    PubMed  CAS  Google Scholar 

  32. Canavan AG, Passingham RE, Marsden CD et al (1990) Prism adaptation and other tasks involving spatial abilities in patients with Parkinson’s disease, patients with frontal lobe lesions and patients with unilateral temporal lobectomies. Neuropsychologia 28:969-984

    Article  PubMed  CAS  Google Scholar 

  33. Robertson C, Flowers KA (1990) Motor set in Parkinson’s disease. J Neurol Neurosurg Psychiatry 53:583-592

    Article  PubMed  CAS  Google Scholar 

  34. Thomas-Ollivier V, Reymann JM, Le Moal S et al (1999) Procedural memory in recent-onset Parkinson’s disease. Dement Geriatr Cogn Disord 10:172-180

    Article  PubMed  CAS  Google Scholar 

  35. Stern Y, Mayeux R, Rosen J et al (1983) Perceptual motor dysfunction in Parkinson’s disease: a deficit in sequential and predictive voluntary movement. J Neurol Neurosurg Psychiatry 46:145-151

    Article  PubMed  CAS  Google Scholar 

  36. Daum I, Schugens MM, Spieker S et al (1995) Memory and skill acquisition in Parkinson’s disease and frontal lobe dysfunction. Cortex 31:413-432

    PubMed  CAS  Google Scholar 

  37. Saint-Cyr JA, Taylor AE, Lang AE (1988) Procedural learning and neostriatal dysfunction in man. Brain 111:941-959

    Article  PubMed  Google Scholar 

  38. Morris RG, Downes JJ, Sahakian BJ et al (1988) Planning and spatial working memory in Parkinson’s disease. J Neurol Neurosurg PsychiatrY 51:757-766

    Article  PubMed  CAS  Google Scholar 

  39. Owen AM, James M, Leigh PN et al (1992) Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 115:1727-1751

    Article  PubMed  Google Scholar 

  40. Browne SE (1997) Mitochondrial dysfunction and oxidative damage in Huntington’s disease. In: Beal MF, Howell N, Bodis-Wollner I (eds) Mitochondria and free radicals in neurodegenerative diseases. Wiley-Liss, New York, pp 361-380

    Google Scholar 

  41. Roos RAC (1986) Huntington’s disease. In: Vinken PJ, Bruyn GW, Klawans HL (eds) Handbook of Clinical Neurology, vol 49, Extrapyramidal disorders. Elsevier, Amsterdam, pp 315-326

    Google Scholar 

  42. Bates G, Harper PS, Jones L (eds) (2002) Huntington’s disease, 3rd edn. Oxford University Press, Oxford, England

    Google Scholar 

  43. Harper PS (1996) Huntington’s disease. WB Saunders, London

    Google Scholar 

  44. Butters N, Wolfe J, Martone M et al (1985) Memory disorders associated with Huntington’s disease: verbal recall, verbal recognition and procedural memory. Neuropsychologia 23:729-743

    Article  PubMed  CAS  Google Scholar 

  45. Butters N, Sax D, Montgomery K et al (1978) Comparison of the neuropsychological deficits associated with early and advanced Huntington’s disease. Arch Neurol 35:585-589

    PubMed  CAS  Google Scholar 

  46. Heindel WC, Butters N, Salmon DP (1988) Impaired learning of a motor skill in patients with Huntington’s disease. Behav Neurosci 102:141-147

    Article  PubMed  CAS  Google Scholar 

  47. Martone M, Butters N, Payne M et al (1984) Dissociations between skill learning and verbal recognition in amnesia and dementia. Arch Neurol 41:965-970

    PubMed  CAS  Google Scholar 

  48. Knopman D, Nissen MJ (1991) Procedural learning is impaired in Huntington’s disease: evidence from the serial reaction time task. Neuropsychologia 29:245-254

    Article  PubMed  CAS  Google Scholar 

  49. Rebok GW, Bylsma FW, Keyl PM et al (1995) Automobile driving in Huntington’s disease. Mov Disord 10:778-787

    Article  PubMed  CAS  Google Scholar 

  50. Boll TJ, Heaton R, Reitan RM (1974) Neuropsychological and emotional correlates of Huntington’s chorea. J Nerv Ment Dis 158:61-69

    Article  PubMed  CAS  Google Scholar 

  51. Mohr E, Brouwers P, Claus JJ et al (1991) Visuospatial cognition in Huntington’s disease. Mov Disord 6:127-132

    Article  PubMed  CAS  Google Scholar 

  52. Bhatia KP, Marsden CD (1994) The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117:859-876

    Article  PubMed  Google Scholar 

  53. Laplane D, Levasseur M, Pillon B et al (1989) Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions. A neuropsychological, magnetic resonance imaging and positron tomography study. Brain 112:699-725

    Article  PubMed  Google Scholar 

  54. Mendez MF, Adams NL, Lewandowski KS (1989) Neurobehavioral changes associated with caudate lesions. Neurology 39:349-354

    PubMed  CAS  Google Scholar 

  55. Haaxma R, van Boxtel A, Brouwer WH et al (1995) Motor function in a patient with bilateral lesions of the globus pallidus. Mov Disord 10:761-777

    Article  PubMed  CAS  Google Scholar 

  56. Villablanca JR, Marcus RJ, Olmstead CE (1976) Effects of caudate nuclei or frontal cortical ablations in cats: I. Neurology and gross behavior. Exp Neurol 52:389-420

    Article  PubMed  CAS  Google Scholar 

  57. Fernagut PO, Diguet E, Bioulac B et al (2004) MPTP potentiates 3-nitropropionic acid-induced striatal damage in mice: reference to striatonigral degeneration. Exp Neurol 185:47-62

    Article  PubMed  CAS  Google Scholar 

  58. Fairley PC, Marshall JF (1986) Dopamine in the lateral caudate-putamen of the rat is essential for somatosensory orientation. Behav Neurosci 100:652-663

    Article  PubMed  CAS  Google Scholar 

  59. Shear DA, Dong J, Gundy CD et al (1998) Comparison of intrastriatal injections of quinolinic acid and 3-nitropropionic acid for use in animal models of Huntington’s disease. Prog Neuropsychopharmacol Biol Psychiatry 22:1217-1240

    Article  PubMed  CAS  Google Scholar 

  60. Joel D, Ayalon L, Tarrasch R et al (1998) Electrolytic lesion of globus pallidus ameliorates the behavioral and neurodegenerative effects of quinolinic acid lesion of the striatum: a potential novel treatment in a rat model of Huntington’s disease. Brain Res 787:143-148

    Article  PubMed  CAS  Google Scholar 

  61. Koob GF, Stinus L, Le Moal M (1981) Hyperactivity and hypoactivity produced by lesions to the mesolimbic dopamine system. Behav Brain Res 3:341-359

    Article  PubMed  CAS  Google Scholar 

  62. Kawasaki T, Ishihara K, Ago Y et al (2007) Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a radical scavenger, prevents 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurotoxicity in the substantia nigra but not the striatum. J Pharmacol Exp Ther 322:274-281

    Article  PubMed  CAS  Google Scholar 

  63. Schwarting RK, Sedelis M, Hofele K et al (1999) Strain-dependent recovery of open-field behavior and striatal dopamine deficiency in the mouse MPTP model of Parkinson’s disease. Neurotox Res 1:41-56

    Article  PubMed  CAS  Google Scholar 

  64. Ferro MM, Bellissimo MI, Anselmo-Franci JA et al (2005) Comparison of bilaterally 6-OHDA- and MPTP-lesioned rats as models of the early phase of Parkinson’s disease: histological, neurochemical, motor and memory alterations. J Neurosci Methods 148:78-87

    Article  PubMed  CAS  Google Scholar 

  65. Sedelis M, Schwarting RK, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res 125:109-125

    Article  PubMed  CAS  Google Scholar 

  66. Quinn LP, Perren MJ, Brackenborough KT et al (2007) A beam-walking apparatus to assess behavioural impairments in MPTP-treated mice: pharmacological validation with R-(-)-deprenyl. J Neurosci Methods 164:43-49

    Article  PubMed  CAS  Google Scholar 

  67. Nash JE, Johnston TH, Collingridge GL et al (2005) Subcellular redistribution of the synapse-associated proteins PSD-95 and SAP97 in animal models of Parkinson’s disease and L-DOPA-induced dyskinesia. FASEB J 19:583-585

    PubMed  CAS  Google Scholar 

  68. Whishaw IQ, Li K, Whishaw PA et al (2003) Distinct forelimb and hind limb stepping impairments in unilateral dopamine-depleted rats: use of the rotorod as a method for the qualitative analysis of skilled walking. J Neurosci Methods 126:13-23

    Article  PubMed  CAS  Google Scholar 

  69. Allbutt HN, Henderson JM (2007) Use of the narrow beam test in the rat: 6-hydroxydopamine model of Parkinson’s disease. J Neurosci Methods 159:195-202

    Article  PubMed  Google Scholar 

  70. Kao KT, Powell DA (1988) Lesions of the substantia nigra retard Pavlovian eye-blink but not heart rate conditioning in the rabbit. Behav Neurosci 102:515-525

    Article  PubMed  CAS  Google Scholar 

  71. Kao K, Powell DA (1986) Lesions of substantia nigra retard pavlovian somatomotor learning but do not affect autonomic conditioning. Neurosci Lett 64:1-6

    Article  PubMed  CAS  Google Scholar 

  72. Powell DA, Mankowski D, Buchanan S (1978) Concomitant heart rate and corneoretinal potential conditioning in the rabbit (Oryctolagus cuniculus): effects of caudate lesions. Physiol Behav 20:143-150

    Article  PubMed  CAS  Google Scholar 

  73. Olmstead CE, Villablanca JR, Marcus RJ, Avery DL (1976) Effects of caudate nuclei or frontal cortex ablations in cats. IV. Bar pressing, maze learning, and performance. Exp Neurol 53:670-693

    Article  PubMed  CAS  Google Scholar 

  74. Dunnett SB, Iversen SD (1982) Neurotoxic lesions of ventrolateral but not anteromedial neostriatum in rats impair differential reinforcement of low rates (DRL) performance. Behav Brain Res 6:213-226

    Article  PubMed  CAS  Google Scholar 

  75. Morris RGM, Garrud P, Rawlins JNP et al (1982) Place navigation impaired in rats with hippocampal lesions. Nature 292:681-683

    Article  Google Scholar 

  76. Morris RG, Schenk F, Tweedie F et al (1990) Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur J Neurosci 2:1016-1028

    Article  PubMed  Google Scholar 

  77. McNamara RK, Skelton RW (1993) The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Res Rev 18:33-49

    Article  PubMed  CAS  Google Scholar 

  78. Devan BD, Goad EH, Petri HL (1996) Dissociation of hippocampal and striatal contributions to spatial navigation in the water maze. Neurobiol Learn Mem 66:305-323

    Article  PubMed  CAS  Google Scholar 

  79. Ayalon L, Doron R, Weiner I et al (2004) Amelioration of behavioral deficits in a rat model of Huntington’s disease by an excitotoxic lesion to the globus pallidus. Exp Neurol 186:46-58

    Article  PubMed  Google Scholar 

  80. Devan BD, McDonald RJ, White NM (1999) Effects of medial and lateral caudate-putamen lesions on place- and cue-guided behaviors in the water maze: relation to thigmotaxis. Behav Brain Res 100:5-14

    Article  PubMed  CAS  Google Scholar 

  81. Thullier F, Lalonde R, Mahler P et al (1996) Dorsal striatal lesions in rats. 2: Effects on spatial and non-spatial learning. Arch Physiol Biochem 104:307-312

    Article  PubMed  CAS  Google Scholar 

  82. Martel G, Blanchard J, Mons N et al (2007) Dynamic interplays between memory systems depend on practice: the hippocampus is not always the first to provide solution. Neuroscience 150:743-753

    Article  PubMed  CAS  Google Scholar 

  83. Andringa G, van Oosten RV, Unger W et al (2000) Systemic administration of the propargylamine CGP 3466B prevents behavioural and morphological deficits in rats with 6-hydroxydopamine-induced lesions in the substantia nigra. Eur J Neurosci 12:3033-3043

    Article  PubMed  CAS  Google Scholar 

  84. Gasbarri A, Sulli A, Innocenzi R et al (1996) Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat. Neuroscience 74: 1037-1044

    PubMed  CAS  Google Scholar 

  85. Archer T, Danysz W, Fredriksson A et al (1988) Neonatal 6-hydroxydopamine-induced dopamine depletions: motor activity and performance in maze learning. Pharmacol Biochem Behav 31:357-364

    Article  PubMed  CAS  Google Scholar 

  86. Archer T, Palomo T, Fredriksson A (2002) Functional deficits following neonatal dopamine depletion and isolation housing: circular water maze acquisition under pre-exposure conditions and motor activity. Neurotox Res 4:503-522

    Article  PubMed  CAS  Google Scholar 

  87. Rex A, Fink H (2004) Cholecystokinin tetrapeptide improves water maze performance of neonatally 6-hydroxydopamine-lesioned young rats. Pharmacol Biochem Behav 79:109-117

    Article  PubMed  CAS  Google Scholar 

  88. Prediger RD, Batista LC, Medeiros R et al (2006) The risk is in the air: Intranasal administration of MPTP to rats reproducing clinical features of Parkinson’s disease. Exp Neurol 202:391-403

    Article  PubMed  CAS  Google Scholar 

  89. Miyoshi E, Wietzikoski S, Camplessei M et al (2002) Impaired learning in a spatial working memory version and in a cued version of the water maze in rats with MPTP-induced mesencephalic dopaminergic lesions. Brain Res Bull 58:41-47

    Article  PubMed  CAS  Google Scholar 

  90. Da Cunha C, Silva MH, Wietzikoski S et al (2006) Place learning strategy of substantia nigra pars compacta-lesioned rats. Behav Neurosci 120:1279-1284

    Article  PubMed  Google Scholar 

  91. Da Cunha C, Angelucci ME, Canteras NS et al (2002) The lesion of the rat substantia nigra pars compacta dopaminergic neurons as a model for Parkinson’s disease memory disabilities. Cell Mol Neurobiol 22:227-237

    Article  PubMed  Google Scholar 

  92. Da Cunha C, Wietzikoski S, Wietzikoski EC et al (2007) Pre-training to find a hidden platform in the Morris water maze can compensate for a deficit to find a cued platform in a rat model of Parkinson’s disease. Neurobiol Learn Mem 87:451-463

    Article  PubMed  Google Scholar 

  93. Perry JC, Da Cunha C, Anselmo-Franci J et al (2004) Behavioural and neurochemical effects of phosphatidylserine in MPTP lesion of the substantia nigra of rats. Eur J Pharmacol 484:225-233

    Article  PubMed  CAS  Google Scholar 

  94. Terry AV Jr, Hill WD, Parikh V et al (2003) Differential effects of haloperidol, risperidone, and clozapine exposure on cholinergic markers and spatial learning performance in rats. Neuropsychopharmacology 28:300-309

    Article  PubMed  CAS  Google Scholar 

  95. Setlow B, McGaugh JL (1999) Involvement of the posteroventral caudate-putamen in memory consolidation in the Morris water maze. Neurobiol Learn Mem 71:240-247

    Article  PubMed  CAS  Google Scholar 

  96. Annett LE, McGregor A, Robbins TW (1989) The effects of ibotenic acid lesions of the nucleus accumbens on spatial learning and extinction in the rat. Behav Brain Res 31:231-242

    Article  PubMed  CAS  Google Scholar 

  97. Thifault S, Krémarik P, Lalonde R (1998) Effects of bilateral electrolytic lesions of the medial nucleus accumbens on exploration and spatial learning. Arch Physiol Biochem 106:297-307

    Article  PubMed  CAS  Google Scholar 

  98. Floresco SB, Seamans JK, Phillips AG (1996) Differential effects of lidocaine infusions into the ventral CA1/subiculum or the nucleus accumbens on the acquisition and retention of spatial information. Behav Brain Res 81:163-171

    Article  PubMed  CAS  Google Scholar 

  99. Ploeger GE, Spruijt BM, Cools AR (1994) Spatial localization in the Morris water maze in rats: acquisition is affected by intra-accumbens injections of the dopaminergic antagonist haloperidol. Behav Neurosci 108:927-934

    Article  PubMed  CAS  Google Scholar 

  100. Setlow B, McGaugh JL (1998) Sulpiride infused into the nucleus accumbens posttraining impairs memory of spatial water maze training. Behav Neurosci 112:603-610

    Article  PubMed  CAS  Google Scholar 

  101. Ferretti V, Sargolini F, Oliverio A et al (2007) Effects of intra-accumbens NMDA and AMPA receptor antagonists on short-term spatial learning in the Morris water maze task. Behav Brain Res 179:43-49

    Article  PubMed  CAS  Google Scholar 

  102. Mitchell JA, Hall G (1988) Caudate-putamen lesions in the rat may impair or potentiate maze learning depending upon availability of stimulus cues and relevance of response cues. Q J Exp Psychol B 40:243-258

    PubMed  CAS  Google Scholar 

  103. Mitchell JA, Channell S, Hall G (1985) Response-reinforcer associations after caudate-putamen lesions in the rat: spatial discrimination and overshadowing-potentiation effects in instrumental learning. Behav Neurosci 99:1074-1088

    Article  PubMed  CAS  Google Scholar 

  104. Dunnett SB, Iversen SD (1981) Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behav Brain Res 2:189-209

    Article  PubMed  CAS  Google Scholar 

  105. Divac I (1972) Neostriatum and functions of prefrontal cortex. Acta Neurobiol Exp (Wars) 32:461-477

    CAS  Google Scholar 

  106. Kolb B (1977) Studies on the caudate-putamen and the dorsomedial thalamic nucleus of the rat: implications for mammalian frontal-lobe functions. Physiol Behav 18:237-244

    Article  PubMed  CAS  Google Scholar 

  107. Schwartzbaum JS, Donovick PJ (1968) Discrimination reversal and spatial alternation associated with septal and caudate dysfunction in rats. J Comp Physiol Psychol 65:83-92

    Article  PubMed  CAS  Google Scholar 

  108. Pisa M, Cyr J (1990) Regionally selective roles of the rat’s striatum in modality-specific discrimination learning and forelimb reaching. Behav Brain Res 37:281-292

    Article  PubMed  CAS  Google Scholar 

  109. Haik KL, Shear DA, Hargrove C et al (2008) 7-nitroindazole attenuates 6-hydroxydopamine-induced spatial learning deficits and dopamine neuron loss in a presymptomatic animal model of Parkinson’s disease. Exp Clin Psychopharmacol 16:178-189

    Article  PubMed  CAS  Google Scholar 

  110. Divac I, Markowitsch HJ, Pritzel M (1978) Behavioral and anatomical consequences of small intrastriatal injections of kainic acid in the rat. Brain Res 151:523-532

    Article  PubMed  CAS  Google Scholar 

  111. Colombo PJ, Davis HP, Volpe BT (1989) Allocentric spatial and tactile memory impairments in rats with dorsal caudate lesions are affected by preoperative behavioral training. Behav Neurosci 103:1242-1250

    Article  PubMed  CAS  Google Scholar 

  112. Chorover SL, Gross CG (1963) Caudate nucleus lesions: behavioral effects in the rat. Science 141:826-827

    Article  PubMed  CAS  Google Scholar 

  113. Mogensen J, Iversen IH, Divac I (1987) Neostriatal lesions impaired rats’ delayed alternation performance in a T-maze but not in a two-key operant chamber. Acta Neurobiol Exp (Wars) 47:45-54

    CAS  Google Scholar 

  114. Potegal M (1969) Role of the caudate nucleus in spatial orientation of rats. J Comp Physiol Psychol 69:756-764

    Article  PubMed  CAS  Google Scholar 

  115. Cook D, Kesner RP (1988) Caudate nucleus and memory for egocentric localization. Behav Neural Biol 49:332-343

    Article  PubMed  CAS  Google Scholar 

  116. Pistell PJ, Nelson CM, Miller MG et al (2009) Striatal lesions interfere with acquisition of a complex maze task in rats. Behav Brain Res 197:138-143

    Article  Google Scholar 

  117. Fernández-Ruiz J, Doudet D, Aigner TG (1999) Spatial memory improvement by levodopa in parkinsonian MPTP-treated monkeys. Psychopharmacology 147:104-107

    Article  PubMed  Google Scholar 

  118. Buerger AA, Gross CG, Rocha-Miranda CE (1974) Effects of ventral putamen lesions on discrimination learning by monkeys. J Comp Physiol Psycho 86:440-446

    Article  CAS  Google Scholar 

  119. Fernandez-Ruiz J, Wang J, Aigner TG, Mishkin M (2001) Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proc Natl Acad Sci USA 98:4196-4201

    Article  PubMed  CAS  Google Scholar 

  120. Mikulas WL (1969) Effects of choice point lights on T-maze performance by caudate lesioned rats. Psychon Sci 15:132-133

    Google Scholar 

  121. Featherstone RE, McDonald RJ (2005) Lesions of the dorsolateral or dorsomedial striatum impair performance of a previously acquired simple discrimination task. Neurobiol Learn Mem 84:159-167

    Article  PubMed  CAS  Google Scholar 

  122. Featherstone RE, McDonald RJ (2004) Dorsal striatum and stimulus-response learning: lesions of the dorsolateral, but not dorsomedial, striatum impair acquisition of a stimulus-response-based instrumental discrimination task, while sparing conditioned place preference learning. Neuroscience 124:23-31

    Article  PubMed  CAS  Google Scholar 

  123. Tombaugh TN, Szostak C, Mills P (1983) Failure of pimozide to disrupt the acquisition of light-dark and spatial discrimination problems. Psychopharmacology 79:161-168

    Article  PubMed  CAS  Google Scholar 

  124. Lalonde R, Vikis-Freibergs V (1982) The effects of chlorpromazine and lithium on appetitive discrimination learning in the rat. Psychopharmacology 76:218-221

    Article  PubMed  CAS  Google Scholar 

  125. Packard MG, McGaugh JL (1992) Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: further evidence for multiple memory systems. Behav Neurosci 106:439-446

    Article  PubMed  CAS  Google Scholar 

  126. Botreau F, El Massioui N, Chéruel F et al (2004) Effects of medial prefrontal cortex and dorsal striatum lesions on retrieval processes in rats. Neuroscience 129:539-553

    Article  PubMed  CAS  Google Scholar 

  127. Shapovalova KB, Kamkina YV (2008) Motor and cognitive functions of the neostriatum during bilateral blockade of its dopamine receptors. Neurosci Behav Physiol 38:71-79

    Article  PubMed  CAS  Google Scholar 

  128. Sanberg PR, Lehmann J, Fibiger HC (1978) Impaired learning and memory after kainic acid lesions of the striatum: a behavioral model of Huntington’s disease. Brain Res 149:546-551

    Article  PubMed  CAS  Google Scholar 

  129. Chesselet M-F (2008) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease. Exp Neurol 209:22-27

    Article  PubMed  CAS  Google Scholar 

  130. Fleming SM, Fernagut PO, Chesselet MF (2005) Genetic mouse models of parkinsonism: strengths and limitations. NeuroRx 2:495-503

    Article  PubMed  Google Scholar 

  131. Kahle PJ (2008) alpha-Synucleinopathy models and human neuropathology: similarities and differences. Acta Neuropathol 115:87-95

    Article  PubMed  CAS  Google Scholar 

  132. Lee MK, Stirling W, Xu Y et al (2002) Human alpha-synuclein-harboring familial Parkinson’s disease-linked Ala-53-> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99:8968-8973

    Article  PubMed  CAS  Google Scholar 

  133. Unger EL, Eve DJ, Perez XA et al (2006) Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human alpha-synuclein in mice. Neurobiol Dis 21:431-443

    Article  PubMed  CAS  Google Scholar 

  134. Yavich L, Tanila H, Vepsäläinen S et al (2004) Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci 24: 11165-11170

    Article  PubMed  CAS  Google Scholar 

  135. Gomez-Isla T, Irizarry MC, Mariash A et al (2003) Motor dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 24:245-258

    Article  PubMed  CAS  Google Scholar 

  136. Kahle PJ, Neumann M, Ozmen L et al (2001) Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol 159:2215-2225

    PubMed  CAS  Google Scholar 

  137. Neumann M, Kahle PJ, Giasson BI et al (2002) Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. J Clin Invest 110:1429-1439

    PubMed  CAS  Google Scholar 

  138. Gispert S, Del Turco D, Garrett L et al (2003) Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation. Mol Cell Neurosci 24:419-429

    Article  PubMed  CAS  Google Scholar 

  139. van der Putten H, Wiederhold KH, Probst A et al (2000) Neuropathology in mice expressing human alpha-synuclein. J Neurosci 20:6021-6029

    PubMed  Google Scholar 

  140. Richfield EK, Thiruchelvam MJ, Cory-Slechta DA et al (2002) Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol 175:35-48

    Article  PubMed  CAS  Google Scholar 

  141. Zhou W, Milder JB, Freed CR (2008) Transgenic mice overexpressing tyrosine-to-cysteine mutant human alpha-synuclein: a progressive neurodegenerative model of diffuse Lewy body disease. J Biol Chem 283:9863-9870

    Article  PubMed  CAS  Google Scholar 

  142. Tofaris GK, Garcia Reitböck P, Humby T et al (2006) Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for Lewy body disorders. J Neurosci 26:3942-3950

    Article  PubMed  CAS  Google Scholar 

  143. Wakamatsu M, Ishii A, Iwata S et al (2008) Selective loss of nigral dopamine neurons induced by overexpression of truncated human alpha-synuclein in mice. Neurobiol Aging 29:574-585

    Article  PubMed  CAS  Google Scholar 

  144. Masliah E, Rockenstein E, Veinbergs I et al (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265-1269

    Article  PubMed  CAS  Google Scholar 

  145. Shults CW, Rockenstein E, Crews L et al (2005) Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci 25:10689-10699

    Article  PubMed  CAS  Google Scholar 

  146. Rockenstein E, Mallory M, Hashimoto M et al (2002) Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68:568-578

    Article  PubMed  CAS  Google Scholar 

  147. Nuber S, Petrasch-Parwez E, Winner B et al (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28:2471-2484

    Article  PubMed  CAS  Google Scholar 

  148. Goldberg MS, Fleming SM, Palacino JJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628-43635

    Article  PubMed  CAS  Google Scholar 

  149. Itier JM, Ibanez P, Mena MA et al (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12:2277-2291

    Article  PubMed  CAS  Google Scholar 

  150. Perez FA, Palmiter RD (2005) Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci USA 102:2174-2179

    Article  PubMed  CAS  Google Scholar 

  151. Stichel CC, Zhu XR, Bader V et al (2007) Mono- and double-mutant mouse models of Parkinson’s disease display severe mitochondrial damage. Hum Mol Genet 16:2377-2393

    Article  PubMed  CAS  Google Scholar 

  152. Von Coelln R, Thomas B, Savitt JM et al (2004) Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci USA 101:10744-10749

    Article  Google Scholar 

  153. Zhu XR, Maskri L, Herold C et al (2007) Non-motor behavioural impairments in parkin-deficient mice. Eur J Neurosci 26:1902-1911

    Article  PubMed  Google Scholar 

  154. Setsuie R, Wang YL, Mochizuki H et al (2007) Dopaminergic neuronal loss in transgenic mice expressing the Parkinson’s disease-associated UCH-L1 I93M mutant. Neurochem Int 50:119-129

    Article  PubMed  CAS  Google Scholar 

  155. Smidt MP, Smits SM, Burbach JP (2004) Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra. Cell Tissue Res 318:35-43

    Article  PubMed  CAS  Google Scholar 

  156. Hwang DY, Ardayfio P, Kang UJ et al (2003) Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Mol Brain Res 114:123-131

    Article  PubMed  CAS  Google Scholar 

  157. Nunes I, Tovmasian LT, Silva RM et al (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 100:4245-4250

    Article  PubMed  CAS  Google Scholar 

  158. van den Munckhof P, Luk KC, Ste-Marie L et al (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130:2535-2542

    Article  PubMed  CAS  Google Scholar 

  159. Smits SM, Mathon DS, Burbach JP et al (2005) Molecular and cellular alterations in the Pitx3-deficient midbrain dopaminergic system. Mol Cell Neurosci 30:352-363

    Article  PubMed  CAS  Google Scholar 

  160. Giasson BI, Duda JE, Quinn SM et al (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34: 521-533

    Article  PubMed  CAS  Google Scholar 

  161. Freichel C, Neumann M, Ballard T et al (2007) Age-dependent cognitive decline and amygdala pathology in alpha-synuclein transgenic mice. Neurobiol Aging 28:1421-1435

    Article  PubMed  CAS  Google Scholar 

  162. Wakamatsu M, Iwata S, Funakoshi T et al (2008) Dopamine receptor agonists reverse behavioral abnormalities of alpha-synuclein transgenic mouse, a new model of Parkinson’s disease. J Neurosci Res 86:640-646

    Article  PubMed  CAS  Google Scholar 

  163. George S, van den Buuse M, San Mok S et al (2008) Alpha-synuclein transgenic mice exhibit reduced anxiety-like behaviour. Exp Neurol 210:788-792

    Article  PubMed  CAS  Google Scholar 

  164. Lalonde R, Strazielle C (2007) Brain regions and genes affecting postural control. Prog Neurobiol 81:45-60

    Article  PubMed  CAS  Google Scholar 

  165. Ardayfio P, Moon J, Leung KK et al (2008) Impaired learning and memory in Pitx3 deficient aphakia mice: a genetic model for striatum-dependent cognitive symptoms in Parkinson’s disease. Neurobiol Dis 31:406-412

    Article  PubMed  CAS  Google Scholar 

  166. Fleming SM, Salcedo J, Fernagut PO et al (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24: 9434-9440

    Article  PubMed  CAS  Google Scholar 

  167. Heng MY, Detloff PJ, Albin RL (2008) Rodent genetic models of Huntington disease. Neurobiol Dis 32:1-9

    Article  PubMed  CAS  Google Scholar 

  168. Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493-506

    Article  PubMed  CAS  Google Scholar 

  169. Reddy PH, Williams M, Charles V et al (1998) Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet 20:198-202

    Article  PubMed  CAS  Google Scholar 

  170. Slow EJ, van Raamsdonk J, Rogers D et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12:1555-1567

    Article  PubMed  CAS  Google Scholar 

  171. Van Raamsdonk JM, Murphy Z, Slow EJ et al (2005) Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum Mol Genet 14:3823-3835

    Article  PubMed  Google Scholar 

  172. von Hörsten S, Schmitt I, Nguyen HP et al (2003) Transgenic rat model of Huntington’s disease. Hum Mol Genet 12:617-624

    Article  Google Scholar 

  173. Menalled L, Zanjani H, MacKenzie L et al (2000) Decrease in striatal enkephalin mRNA in mouse models of Huntington’s disease. Exp Neurol 162:328-342

    Article  PubMed  CAS  Google Scholar 

  174. Menalled LB, Sison JD, Wu Y et al (2002) Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington’s disease knock-in mice. J Neurosci 22:8266-8276

    PubMed  CAS  Google Scholar 

  175. Menalled LB, Sison JD, Dragatsis I et al (2003) Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol 465:11-26

    Article  PubMed  CAS  Google Scholar 

  176. Wheeler VC, Gutekunst CA, Vrbanac V et al (2002) Early phenotypes that presage late-onset neurodegenerative disease allow testing of modifiers in Hdh CAG knock-in mice. Hum Mol Genet 11:633-640

    Article  PubMed  CAS  Google Scholar 

  177. Wheeler VC, Auerbach W, White JK et al (1999) Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Hum Mol Genet 8:115-122

    Article  PubMed  CAS  Google Scholar 

  178. Wheeler VC, White JK, Gutekunst CA et al (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 9:503-513

    Article  PubMed  CAS  Google Scholar 

  179. Heng MY, Tallaksen-Greene SJ, Detloff PJ et al (2007) Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington’s disease. J Neurosci 27:8989-8998

    Article  PubMed  CAS  Google Scholar 

  180. Lin CH, Tallaksen-Greene S, Chien WM et al (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 10:137-144

    Article  PubMed  CAS  Google Scholar 

  181. Bolivar VJ, Manley K, Messer A (2004) Early exploratory behavior abnormalities in R6/1 Huntington’s disease transgenic mice. Brain Res 1005:29-35

    Article  PubMed  CAS  Google Scholar 

  182. Hodges A, Hughes G, Brooks S et al (2008) Brain gene expression correlates with changes in behavior in the R6/1 mouse model of Huntington’s disease. Genes Brain Behav 7:288-299

    Article  PubMed  CAS  Google Scholar 

  183. Lüesse HG, Schiefer J, Spruenken A et al (2001) Evaluation of R6/2 HD transgenic mice for therapeutic studies in Huntington’s disease: behavioral testing and impact of diabetes mellitus. Behav Brain Res 126:185-195

    Article  PubMed  Google Scholar 

  184. Hickey MA, Gallant K, Gross GG et al (2005) Early behavioral deficits in R6/2 mice suitable for use in preclinical drug testing. Neurobiol Dis 20:1-11

    Article  PubMed  CAS  Google Scholar 

  185. Guidetti P, Charles V, Chen EY et al (2001) Early degenerative changes in transgenic mice expressing mutant huntingtin involve dendritic abnormalities but no impairment of mitochondrial energy production. Exp Neurol 169:340-350

    Article  PubMed  CAS  Google Scholar 

  186. van Dellen A, Blakemore C, Deacon R et al (2000) Delaying the onset of Huntington’s in mice. Nature 404:721-722

    Article  PubMed  Google Scholar 

  187. Hansson O, Guatteo E, Mercuri NB et al (2001) Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene. Eur J Neurosci 14:1492-1504

    Article  PubMed  CAS  Google Scholar 

  188. Carter RJ, Lione LA, Humby T et al (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:3248-3257

    PubMed  CAS  Google Scholar 

  189. Trueman RC, Brooks SP, Jones L et al (2007) The operant serial implicit learning task reveals early onset motor learning deficits in the Hdh knock-in mouse model of Huntington’s disease. Eur J Neurosci 25:551-558

    Article  PubMed  Google Scholar 

  190. Lione LA, Carter RJ, Hunt MJ et al (1999) Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. J Neurosci 19:10428-10437

    PubMed  CAS  Google Scholar 

  191. Murphy KP, Carter RJ, Lione LA et al (2000) Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. J Neurosci 20:5115-5123

    PubMed  CAS  Google Scholar 

  192. Nithianantharajah J, Barkus C, Murphy M et al (2008) Gene-environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington’s disease transgenic mice. Neurobiol Dis 29:490-504

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was funded by a grant from the Natural Sciences and Engineering Research Council of Canada to R.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lalonde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lalonde, R., Strazielle, C. (2010). Basal Ganglia Disorders in Genetic Models and Experimentally Induced Lesions. In: Kalueff, A., Bergner, C. (eds) Transgenic and Mutant Tools to Model Brain Disorders. Neuromethods, vol 44. Humana Press. https://doi.org/10.1007/978-1-60761-474-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-474-6_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-473-9

  • Online ISBN: 978-1-60761-474-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics