Skip to main content

Mutant and Transgenic Tools in Modeling Schizophrenia

  • Protocol
  • First Online:
Transgenic and Mutant Tools to Model Brain Disorders

Part of the book series: Neuromethods ((NM,volume 44))

  • 685 Accesses

Abstract

Schizophrenia is thought to be a polygenic disorder that is associated with considerable phenotypic heterogeneity across patients, including variations in age at onset, diagnostic symptoms and subsequent course of illness. Consequently, the generation of incisive mutant models for this disorder faces substantive challenges. The majority of mutant models for schizophrenia relate to putative pathobiological and pharmacological processes and to the functional roles of the increasingly large and diverse array of genes associated with risk for the disorder. The present review considers the application of mutant animal phenotypes to the study of pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes. We also discuss various technological approaches to the generation of such mutants and highlight the diverse methodologies adopted in phenotypic assessment of these models. Finally, we outline the principal challenges to be faced by researchers engaging in the generation and evaluation of mutant models for schizophrenia and consider possible approaches to identify improved models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keshavan MS, Tandon R, Boutros NN et al (2008) Schizophrenia, “just the facts”: what we know in 2008 Part 3: Neurobiology. Schizophr Res 106:89-107

    Article  PubMed  Google Scholar 

  2. Tandon R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “just the facts”: what we know in 2008 Part 1: Overview. Schizophr Res 100:4-19

    Article  PubMed  Google Scholar 

  3. Tandon R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “just the facts” what we know in 2008 Part 2. Epidemiology and etiology. Schizophr Res 102:1-18

    Article  PubMed  Google Scholar 

  4. Waddington JL, Corvin AP, Donohoe G et al (2007) Functional genomics and schizophrenia: endophenotypes and mutant models. Psychiat Clin North Am 30:365-399

    Article  Google Scholar 

  5. Arguello PA, Gogos JA (2006) Modeling madness in mice: One piece at a time. Neuron 52:179-196

    Article  CAS  PubMed  Google Scholar 

  6. Chen J, Lipska BK, Weinberger DR (2006) Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biol Psychiatry 59:1180-1188

    Article  CAS  PubMed  Google Scholar 

  7. O’Tuathaigh CMP, Babovic D, O’Meara G et al (2007) Susceptibility genes for schizophrenia: phenotypic characterisation of mutant models. Neurosci Biobehav Rev 31:60-78

    Article  PubMed  CAS  Google Scholar 

  8. Desbonnet L, Waddington JL, O’Tuathaigh CM (2009) Mutant models for genes associated with schizophrenia. Biochem Soc Trans 37:308-312

    Article  CAS  PubMed  Google Scholar 

  9. Desbonnet L, Waddington JL, O’Tuathaigh CM (2009) Mice mutant for genes associated with schizophrenia: common phenotype or distinct endophenotypes? Brain Behav Res, (in press)

    Google Scholar 

  10. Tandon R, Nasrallah HA, Keshavan MS (2009) Schizophrenia, “just the facts”: Part 4: Clinical features and conceptualization. Schizophr Res, (in press)

    Google Scholar 

  11. Bocti C, Black DN, Waddington JL (2004) Dyskinesia in patients with schizophrenia never treated with antipsychotics: conceptual and pathophysiological implications. In: Bedard MA (ed) Mental and behavioural dysfunction in movement disorders. Humana Press, Totawa, NJ, pp 489-498

    Google Scholar 

  12. Tomiyama K, O’Tuathaigh CM, O’Sullivan GJ et al (2009) Phenotype of spontaneous orofacial dyskinesia in neuregulin-1 “knockout” mice. Prog Neuropsychopharmacol Biol Psychiatry 33:330-333

    Article  CAS  PubMed  Google Scholar 

  13. Whitty PF, Owoeye O, Waddington JL (2009) Neurological signs and involuntary movements in schizophrenia: intrinsic to and informative on systems pathobiology. Schizophr Bull 35:415-424

    Article  PubMed  Google Scholar 

  14. Waddington JL, Morgan MG (2001) Pathobiology of schizophrenia. In: Lieberman JA, Murray RM (eds) Comprehensive care of schizophrenia. Martin Dunitz, London, pp 28-35

    Google Scholar 

  15. Gogos JA (2007) Schizophrenia susceptibility genes: in search of a molecular logic and novel drug targets for a devastating disorder. Int Rev Neurobiol 78:397-422

    Article  CAS  PubMed  Google Scholar 

  16. Allen NC, Bagade S, McQueen MB et al (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40:827-834

    Article  CAS  PubMed  Google Scholar 

  17. Shi J, Gershon ES, Liu C (2008) Genetic associations with schizophrenia: Meta-analyses of 12 candidate genes. Schizophr Res 104:96-107

    Article  PubMed  Google Scholar 

  18. Gavériaux-Ruff C, Kieffer BL (2007) Condi­tional gene targeting in the mouse nervous system: Insights into brain function and diseases. Pharmacol Ther 113:619-634

    Article  PubMed  CAS  Google Scholar 

  19. O’Neal KR, Agah R (2007) Conditional targeting: inducible deletion by Cre recombinase. Methods Mol Biol 366:309-320

    Article  PubMed  Google Scholar 

  20. Crawley JN (2008) Behavioral phenotyping strategies for mutant mice. Neuron 57:809-818

    Article  CAS  PubMed  Google Scholar 

  21. Low NC, Hardy J (2007) What is a schizophrenic mouse? Neuron 54:348-349

    Article  CAS  PubMed  Google Scholar 

  22. Tecott LH, Nestler EJ (2004) Neurobehavioral assessment in the information age. Nat Neurosci 7:462-466

    Article  CAS  PubMed  Google Scholar 

  23. Waddington JL, O’Tuathaigh C, O’Sullivan G et al (2005) Phenotypic studies on dopamine receptor subtype and associated signal transduction mutants: insights and challenges from 10   years at the psychopharmacology-molecular biology interface. Psychopharmacology 181:611-638

    Article  CAS  PubMed  Google Scholar 

  24. O’Tuathaigh CM, O’Sullivan GJ, Kinsella A et al (2006) Sexually dimorphic changes in the exploratory and habituation profiles of heterozygous neuregulin-1 knockout mice. NeuroReport 17:79-83

    Article  PubMed  Google Scholar 

  25. Babovic D, O’Tuathaigh CM, O’Sullivan GJ et al (2007) Exploratory and habituation phenotype of heterozygous and homozygous COMT knockout mice. Behav Brain Res 183:236-239

    Article  CAS  PubMed  Google Scholar 

  26. Moy SS, Nadler JJ, Perez A et al (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3:287-302

    Article  CAS  PubMed  Google Scholar 

  27. O’Tuathaigh CM, Babovic D, O’Sullivan GJ et al (2007) Phenotypic characterization of spatial cognition and social behavior in mice with ‘knockout’ of the schizophrenia risk gene neuregulin 1. Neuroscience 147:18-27

    Article  PubMed  CAS  Google Scholar 

  28. Babovic D, O’Tuathaigh CM, O’Connor AM et al (2008) Phenotypic characterization of cognition and social behavior in mice with heterozygous versus homozygous deletion of catechol-O-methyltransferase. Neuroscience 155:1021-1029

    Article  CAS  PubMed  Google Scholar 

  29. Guillin O, Abi-Dargham A, Laruelle M (2007) Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 78:1-39

    Article  CAS  PubMed  Google Scholar 

  30. Goldman-Rakic PS (1998) The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42:707-711

    Article  CAS  PubMed  Google Scholar 

  31. Mattay VS, Goldberg TE, Fera F et al (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 100:6186-6191

    Article  CAS  PubMed  Google Scholar 

  32. Vijayraghavan S, Wang M, Birnbaum SG et al (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376-384

    Article  CAS  PubMed  Google Scholar 

  33. Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26:365-384

    Article  CAS  PubMed  Google Scholar 

  34. Stone JM, Morrison PD, Pilowsky LS (2007) Glutamate and dopamine dysregulation in schizophrenia-a synthesis and selective review. J Psychopharmacol 21:440-452

    Article  CAS  PubMed  Google Scholar 

  35. Pilowsky LS, Bressan RA, Stone JM et al (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11:118-119

    Article  CAS  PubMed  Google Scholar 

  36. Castner SA, Williams GV (2007) Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn 63:94-122

    Article  PubMed  Google Scholar 

  37. Bertram L (2008) Genetic research in schizophrenia: new tools and future perspectives. Schizophr Bull 34:806-812

    Article  PubMed  Google Scholar 

  38. Chubb JE, Bradshaw NJ, Soares DC et al (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13:36-64

    Article  CAS  PubMed  Google Scholar 

  39. Muir WJ, Pickard BS, Blackwood DH (2008) Disrupted-in-schizophrenia-1. Curr Psychiatry Rep 10:140-147

    Article  PubMed  Google Scholar 

  40. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636-645

    Article  PubMed  Google Scholar 

  41. Braff DL, Freedman R, Schork NJ et al (2007) Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr Bull 33:21-32

    Article  PubMed  Google Scholar 

  42. Kellendonk C, Simpson EH, Polan HJ et al (2006) Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49:603-615

    Article  CAS  PubMed  Google Scholar 

  43. Drew MR, Simpson EH, Kellendonk C et al (2007) Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing. J Neurosci 27:7731-7739

    Article  CAS  PubMed  Google Scholar 

  44. Bach ME, Simpson EH, Kahn L et al (2008) Transient and selective overexpression of D2 receptors in the striatum causes persistent deficits in conditional associative learning. Proc Natl Acad Sci USA 105:16027-16032

    Article  CAS  PubMed  Google Scholar 

  45. Waddington JL, Clifford JJ, McNamara FN et al (2001) The psychopharmacology-molecular biology interface: exploring the behavioural roles of dopamine receptor subtypes using targeted gene deletion (‘knockout’). Prog Neuropsychopharmacol Biol Psychiatry 25:925-964

    Article  CAS  PubMed  Google Scholar 

  46. O’Sullivan GJ, O’Tuathaigh CM, Tomiyama K, et al. Dopamine receptors and behaviour: From psychopharmacology to mutant models. In: Neve KA, ed. The dopamine receptors. New Jersey: Humana Press, 2009 (in press).

    Google Scholar 

  47. Tomiyama K, McNamara FN, Clifford JJ et al (2002) Phenotypic resolution of spontaneous and D1-like agonist-induced orofacial movement topographies in congenic dopamine D1A receptor ‘knockout’ mice. Neuropharmacology 42:644-652

    Article  CAS  PubMed  Google Scholar 

  48. Tomiyama K, McNamara FN, Clifford JJ et al (2004) Phenotypic resolution of spontaneous and D1-like agonist-induced orofacial movement topographies in congenic dopamine D1A receptor ‘knockout’ mice. Synapse 51:71-81

    Article  CAS  PubMed  Google Scholar 

  49. Tomiyama K, Makihara Y, Yamamoto H et al (2006) Disruption of orofacial movement topographies in congenic mutants with dopamine D5 but not D4 receptor or DARPP-32 transduction ‘knockout’. Eur Neuropsychopharmacol 16:437-445

    Article  CAS  PubMed  Google Scholar 

  50. Gainetdinov RR, Jones SR, Fumagalli F et al (1998) Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Rev 26:148-153

    Article  CAS  PubMed  Google Scholar 

  51. Hoffman BJ, Hansson SR, Mezey E et al (1998) Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front Neuroendocrinol 19:187-231

    Article  CAS  PubMed  Google Scholar 

  52. Gainetdinov RR, Jones SR, Caron MG (1999) Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol Psychiatry 46:303-311

    Article  CAS  PubMed  Google Scholar 

  53. Ralph RJ, Paulus MP, Fumagalli F et al (2001) Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J Neurosci 21:305-313

    CAS  PubMed  Google Scholar 

  54. Powell SB, Young JW, Ong JC et al (2008) Atypical antipsychotics clozapine and quetiapine attenuate prepulse inhibition deficits in dopamine transporter knockout mice. Behav Pharmacol 19:562-565

    Article  CAS  PubMed  Google Scholar 

  55. Zhuang X, Oosting RS, Jones SR et al (2001) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci USA 98:1982-1987

    Article  CAS  PubMed  Google Scholar 

  56. Wu N, Cepeda C, Zhuang X et al (2007) Altered corticostriatal neurotransmission and modulation in dopamine transporter knock-down mice. J Neurophysiol 98:423-432

    Article  CAS  PubMed  Google Scholar 

  57. Salahpour A, Medvedev IO, Beaulieu JM et al (2007) Local knockdown of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biol Psychiatry 61:65-69

    Article  CAS  PubMed  Google Scholar 

  58. Turiault M, Parnaudeau S, Milet A et al (2007) Analysis of dopamine transporter gene expression pattern - generation of DAT-iCre transgenic mice. FEBS J 274:3568-3577

    Article  CAS  PubMed  Google Scholar 

  59. Egan MF, Goldberg TE, Kolachana BS et al (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98:6917-6922

    Article  CAS  PubMed  Google Scholar 

  60. Tunbridge EM, Harrison PJ, Weinberger DR (2006) Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 60:141-151

    Article  CAS  PubMed  Google Scholar 

  61. Barnett JH, Scoriels L, Munafò MR (2008) Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/ 108Met polymorphism. Biol Psychiatry 64: 137-144

    Article  CAS  PubMed  Google Scholar 

  62. Gogos JA, Morgan M, Luine V et al (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 95:9991-9996

    Article  CAS  PubMed  Google Scholar 

  63. Papaleo F, Crawley JN, Song J et al (2008) Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 28:8709-8723

    Article  CAS  PubMed  Google Scholar 

  64. Mohn AR, Gainetdinov RR, Caron MG et al (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427-436

    Article  CAS  PubMed  Google Scholar 

  65. Duncan GE, Moy SS, Perez A et al (2004) Deficits in senosrimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Behav Brain Res 153:507-519

    Article  CAS  PubMed  Google Scholar 

  66. Duncan GE, Moy SS, Lieberman JA et al (2006) Effects of haloperidol, clozapine, and quetiapine on sensorimotor gating in a genetic model of reduced NMDA receptor function. Psychopharmacology 184:190-200

    Article  CAS  PubMed  Google Scholar 

  67. Fradley RL, O’Meara GF, Newman RJ et al (2005) STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating. Behav Brain Res 163:257-264

    Article  CAS  PubMed  Google Scholar 

  68. Moy SS, Perez A, Koller BH et al (2006) Amphetamine-induced disruption of prepulse inhibition in mice with reduced NMDA receptor function. Brain Res 1089:186-194

    Article  CAS  PubMed  Google Scholar 

  69. Patil ST, Zhang L, Martenyi F et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102-1107

    Article  CAS  PubMed  Google Scholar 

  70. Harrison PJ, Lyon L, Sartorius LJ et al (2008) The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia. J Psychopharmacol 22:308-322

    Article  CAS  PubMed  Google Scholar 

  71. Krivoy A, Fischel T, Weizman A (2008) The possible involvement of metabotropic glutamate receptors in schizophrenia. Eur Neuropsychopharmacol 18:395-405

    Article  CAS  PubMed  Google Scholar 

  72. Fell MJ, Svensson KA, Johnson BG et al (2008) Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther 326:209-217

    Article  CAS  PubMed  Google Scholar 

  73. Seeman P, Battaglia G, Corti C et al (2009) Glutamate receptor mGlu2 and mGlu3 knockout striata are dopamine supersensitive, with elevated D2(High) receptors and marked supersensitivity to the dopamine agonist (+)PHNO. Synapse 63:247-251

    Article  CAS  PubMed  Google Scholar 

  74. Brody SA, Geyer MA (2004) Interactions of the mGluR5 gene with breeding and maternal factors on startle and prepulse inhibition in mice. Neurotox Res 6:79-90

    Article  PubMed  Google Scholar 

  75. Gray L, Hannan AJ (2007) Dissecting cause and effect in the pathogenesis of psychiatric disorders: genes, environment and behaviour. Curr Mol Med 7:470-478

    Article  CAS  PubMed  Google Scholar 

  76. Gray L, van den Buuse M, Scarr E et al (2009) Clozapine reverses schizophrenia-related behaviours in the metabotropic glutamate receptor 5 knockout mouse: association with N-methyl-D-aspartic acid receptor up-regulation. Int J Neuropsychopharmacol 12:45-60

    Article  CAS  PubMed  Google Scholar 

  77. Ahn JH, Sung JY, McAvoy T et al (2007) The B’’/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A. Proc Natl Acad Sci USA 104:9876-9881

    Article  CAS  PubMed  Google Scholar 

  78. Zeng H, Chattarji S, Barbarosie M et al (2001) Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107:617-629

    Article  CAS  PubMed  Google Scholar 

  79. Miyakawa T, Leiter LM, Gerber DJ et al (2003) Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci USA 100:8987-8992

    Article  CAS  PubMed  Google Scholar 

  80. Verrall L, Walker M, Rawlings N et al (2007) d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J NeuroSci 26:1657-1669

    Article  PubMed  Google Scholar 

  81. Bendikov I, Nadri C, Amar S et al (2007) A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res 90:41-51

    Article  PubMed  Google Scholar 

  82. Boks MP, Rietkerk T, van de Beek MH et al (2007) Reviewing the role of the genes G72 and DAAO in glutamate neurotransmission in schizophrenia. Eur Neuropsychopharmacol 17:567-572

    Article  CAS  PubMed  Google Scholar 

  83. Li D, He L (2007) Association study between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia: a meta-analysis. Schizophr Res 96:112-118

    Article  PubMed  Google Scholar 

  84. Corvin A, McGhee KA, Murphy K et al (2007) Evidence for association and epistasis at the DAOA/G30 and D-amino acid oxidase loci in an Irish schizophrenia sample. Am J Med Genet B Neuropsychiatr Genet 144B:949-953

    Article  CAS  PubMed  Google Scholar 

  85. Hashimoto A, Yoshikawa M, Niwa A et al (2005) Mice lacking D-amino acid oxidase activity display marked attenuation of stereotypy and ataxia induced by MK-801. Brain Res 1033:210-215

    Article  CAS  PubMed  Google Scholar 

  86. Almond SL, Fradley RL, Armstrong EJ et al (2006) Behavioral and biochemical characterization of a mutant mouse train lacking D-amino acid oxidase activity and its implications for schizophrenia. Mol Cell Neurosci 32:324-334

    Article  CAS  PubMed  Google Scholar 

  87. Hashimoto A, Konno R, Yano H et al (2008) Mice lacking d-amino acid oxidase activity marked reduction of methamphetamine-induced stereotypy. Eur J Pharmacol 586:221-225

    Article  CAS  PubMed  Google Scholar 

  88. Callicott JH, Straub RE, Pezawas L et al (2005) Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci U S A 102:8627-8632

    Article  CAS  PubMed  Google Scholar 

  89. Palo OM, Antila M, Silander K et al (2007) Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Hum Mol Genet 16:2517-2528

    Article  CAS  PubMed  Google Scholar 

  90. Koike H, Arguello PA, Kvajo M et al (2006) Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci USA 103:3693-3697

    Article  CAS  PubMed  Google Scholar 

  91. Kvajo M, McKellar H, Arguello PA et al (2008) A mutation in mouse Disc 1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA 105:7076-7081

    Article  CAS  PubMed  Google Scholar 

  92. Clapcote SJ, Lipina TV, Millar JK et al (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387-402

    Article  CAS  PubMed  Google Scholar 

  93. Li W, Zhou Y, Jentsch JD et al (2007) Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci USA 104:18280-18285

    Article  CAS  PubMed  Google Scholar 

  94. Hikida T, Jaaro-Peled H, Seshadri S et al (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA 104:14501-14506

    Article  CAS  PubMed  Google Scholar 

  95. Pletnikov MV, Ayhan Y, Nikolskaia O et al (2008) Inducible expression of mutant human DISC1 in mice is associated with brain and behavioural abnormalities reminiscent of schizophrenia. Mol Psychiatry 13:173-186

    Article  CAS  PubMed  Google Scholar 

  96. Shen S, Lang B, Nakamoto C et al (2008) Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci 28:10893-10904

    Article  CAS  PubMed  Google Scholar 

  97. Weickert CS, Straub RE, McClintock BW et al (2004) Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 61:544-555

    Article  CAS  PubMed  Google Scholar 

  98. Weickert CS, Rothmond DA, Hyde TM et al (2008) Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients. Schizophr Res 98:105-110

    Article  PubMed  Google Scholar 

  99. Numakawa T, Yagasaki Y, Ishimoto T et al (2004) Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 13:2699-2708

    Article  CAS  PubMed  Google Scholar 

  100. Feng YQ, Zhou ZY, He X et al (2008) Dysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia. Schizophr Res 106(2-3):218-228

    Article  PubMed  Google Scholar 

  101. Bhardwaj SK, Baharnoori M, Sharif-Askari B et al (2009) Behavioral characterization of dysbindin-1 deficient sandy mice. Behav Brain Res 197(2):435-441

    Article  CAS  PubMed  Google Scholar 

  102. Hattori S, Murotani T, Matsuzaki S et al (2008) Behavioral abnormalities and dopamine reductions in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Biochem Biophys Res Commun 373:298-302

    Article  CAS  PubMed  Google Scholar 

  103. Takao K, Yamasaki N, Miyakawa T (2007) Impact of brain-behavior phenotyping of genetically-engineered mice on research of neuropsychiatric disorders. Neurosci Res 58:124-132

    Article  CAS  PubMed  Google Scholar 

  104. Cox MM, Tucker AM, Tang J, et al (2009) Neurobehavioral abnormalities in the dysbindin-1 mutant, sandy, on a C57BL/6J genetic background. Genes Brain Behav (in press).

    Google Scholar 

  105. Murotani T, Ishizuka T, Hattori S et al (2007) High dopamine turnover in the brains of Sandy mice. Neurosci Lett 421:47-51

    Article  CAS  PubMed  Google Scholar 

  106. Harrison PJ, Law AJ (2006) Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 60:132-140

    Article  CAS  PubMed  Google Scholar 

  107. Mei L, Xiong WC (2008) Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9:437-452

    Article  CAS  PubMed  Google Scholar 

  108. O’Tuathaigh CM, Desbonnet L, Waddington JL (2009) Neuregulin-1 signaling in schizophrenia: ‘Jack of all trades’ or master of some? Expert Rev Neurother 9:1-3

    Article  PubMed  Google Scholar 

  109. Gong YG, Wu CN, Xing QH, et al (2009) A two-method meta-analysis of Neuregulin 1 (NRG1) association and heterogeneity in schizophrenia. Schizophr Res (in press).

    Google Scholar 

  110. Stefansson H, Sigurdsson E, Steinthorsdottir V et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877-892

    Article  PubMed  Google Scholar 

  111. O’Tuathaigh CM, O’Connor AM, O’Sullivan GJ et al (2008) Disruption to social dyadic interactions but not emotional/anxiety-related behaviour in mice with heterozygous ‘knockout’ of the schizophrenia risk gene neuregulin-1. Prog Neuropsychopharmacol Biol Psychiatry 32:462-466

    Article  PubMed  CAS  Google Scholar 

  112. Karl T, Duffy L, Scimone A et al (2007) Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia. Genes Brain Behav 6:677-687

    Article  CAS  PubMed  Google Scholar 

  113. Boucher AA, Hunt GE, Karl T et al (2007) Heterozygous neuregulin 1 mice display greater baseline and Delta(9)-tetrahydrocannabinol-induced c-Fos expression. Neuroscience 149:861-870

    Article  CAS  PubMed  Google Scholar 

  114. Bjarnadottir M, Misner DL, Haverfield-Gross S et al (2007) Neuregulin1 (NRG1) signaling through Fyn modulates NMDA receptor phosphorylation: differential synaptic function in NRG1+/- knock-outs compared with wild-type mice. J Neurosci 27:4519-4529

    Article  CAS  PubMed  Google Scholar 

  115. Dean B, Karl T, Pavey G et al (2008) Increased levels of serotonin 2A receptors and serotonin transporter in the CNS of neuregulin 1 hypomorphic/mutant mice. Schizophr Res 99:341-349

    Article  PubMed  Google Scholar 

  116. Boucher AA, Arnold JC, Duffy L et al (2007) Heterozygous neuregulin 1 mice are more sensitive to the behavioural effects of Delta9-tetrahydrocannabinol. Psychopharmacology 192:325-336

    Article  CAS  PubMed  Google Scholar 

  117. Murray RM, Morrison PD, Henquet C et al (2007) Cannabis, the mind and society: the hash realities. Nat Rev Neurosci 8:885-895

    Article  CAS  PubMed  Google Scholar 

  118. Chen YJ, Johnson MA, Lieberman MD et al (2008) Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci 28:6872-6883

    Article  CAS  PubMed  Google Scholar 

  119. Hancock ML, Canetta SE, Role LW et al (2008) Presynaptic type III neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons. J Cell Biol 181:511-521

    Article  CAS  PubMed  Google Scholar 

  120. George TP, Vessicchio JC, Termine A et al (2002) Effects of smoking abstinence on visuospatial working memory function in schizophrenia. Neuropsychopharmacol 26:75-85

    Article  Google Scholar 

  121. Postma P, Gray JA, Sharma T et al (2006) A behavioural and functional neuroimaging investigation into the effects of nicotine on sensorimotor gating in healthy subjects and persons with schizophrenia. Psychopharmacology 184:589-599

    Article  CAS  PubMed  Google Scholar 

  122. Kumari V, Postma P (2005) Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev 29:1021-1034

    Article  CAS  PubMed  Google Scholar 

  123. Rimer M, Barrett DW, Maldonado MA et al (2005) Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition. NeuroReport 16:271-275

    Article  CAS  PubMed  Google Scholar 

  124. Levitt P, Ebert P, Mirnics K et al (2006) Making the case for a candidate vulnerability gene in schizophrenia: Convergent evidence for regulator of G-protein signaling 4 (RGS4). Biol Psychiatry 60:534-537

    Article  CAS  PubMed  Google Scholar 

  125. Ding L, Hegde AN (2009) Expression of RGS4 splice variants in dorsolateral prefrontal cortex of schizophrenic and bipolar disorder patients. Biol Psychiatry 65:541-545

    Article  CAS  PubMed  Google Scholar 

  126. Grillet N, Pattyn A, Contet C et al (2005) Generation and characterization of Rgs4 mutant mice. Mol Cell Biol 25:4221-4228

    Article  CAS  PubMed  Google Scholar 

  127. Hains AB, Arnsten AF (2008) Molecular mechanisms of stress-induced prefrontal cortical impairment: implications for mental illness. Learn Mem 15:551-564

    Article  PubMed  Google Scholar 

  128. McOmish CE, Burrows EL, Howard M et al (2008) PLC-beta1 knockout mice as a model of disrupted cortical development and plasticity: behavioral endophenotypes and dysregulation of RGS4 gene expression. Hippocampus 18:824-834

    Article  CAS  PubMed  Google Scholar 

  129. Laporte JL, Ren-Patterson RF, Murphy DL et al (2008) Refining psychiatric genetics: from ‘mouse psychiatry’ to understanding complex human disorders. Behav Pharmacol 19:377-384

    Article  PubMed  Google Scholar 

  130. Crusio WE, Goldowitz D, Holmes A et al (2009) Standards for the publication of mouse mutant studies. Genes Brain Behav 8:1-4

    Article  CAS  PubMed  Google Scholar 

  131. Crusio WE (2004) Flanking gene and genetic background problems in genetically manipulated mice. Biol Psychiatry 56:381-385

    Article  CAS  PubMed  Google Scholar 

  132. Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563-574

    Article  CAS  PubMed  Google Scholar 

  133. Van Os J, Rutten JP, Poulton R (2008) Gene-environments in schizophrenia: Review of epidemiological findings and future directions. Schizophr Bull 34:1066-1082

    Article  PubMed  Google Scholar 

  134. Caspi A, Moffitt TE, Cannon M et al (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry 57:1117-1127

    Article  CAS  PubMed  Google Scholar 

  135. Cantor-Graae E, Selten JP (2005) Schizophrenia and migration: a meta-analysis and review. Am J Psychiatry 162:12-24

    Article  PubMed  Google Scholar 

  136. Selten JP, Cantor-Graae E (2007) Hypothesis: social defeat is a risk factor for schizophrenia? Br J Psychiatry Suppl 51:s9-s12

    Article  PubMed  Google Scholar 

  137. Berton O, McClung CA, Dileone RJ et al (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864-868

    Article  CAS  PubMed  Google Scholar 

  138. Krishnan V, Han MH, Graham DL et al (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391-404

    Article  CAS  PubMed  Google Scholar 

  139. Ivleva E, Thaker G, Tamminga CA (2008) Comparing genes and phenomenology in the major psychoses: schizophrenia and bipolar 1 disorder. Schizophr Bull 34:734-742

    Article  PubMed  Google Scholar 

  140. Morris DW, Murphy K, Kenny N et al (2008) Dysbindin (DTNBP1) and the biogenesis of lysosome-related organelles complex 1 (BLOC-1): main and epistatic gene effects are potential contributors to schizophrenia susceptibility. Biol Psychiatry 63:24-31

    Article  CAS  PubMed  Google Scholar 

  141. Steuber-Buchberger P, Wurst W, Kühn R (2008) Simultaneous Cre-mediated conditional knockdown of two genes in mice. Genesis 46:144-151

    Article  CAS  PubMed  Google Scholar 

  142. Dragin N, Shi Z, Madan R et al (2008) Phenotype of the Cyp1a1/1a2/1b1−/− triple-knockout mouse. Mol Pharmacol 73:1844-1856

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ studies are supported by Science Foundation Ireland, the Health Research Board of Ireland and a grant for promotion of multidisciplinary research projects entitled Translational Research Network on Orofacial Neurological Disorders from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Waddington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Desbonnet, L., Tomiyama, K., Koshikawa, N., O’Tuathaigh, C.M.P., Waddington, J.L. (2010). Mutant and Transgenic Tools in Modeling Schizophrenia. In: Kalueff, A., Bergner, C. (eds) Transgenic and Mutant Tools to Model Brain Disorders. Neuromethods, vol 44. Humana Press. https://doi.org/10.1007/978-1-60761-474-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-474-6_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-473-9

  • Online ISBN: 978-1-60761-474-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics