Skip to main content

N-Linked Protein Glycosylation in a Bacterial System

  • Protocol
  • First Online:
Functional Glycomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 600))

Abstract

N-Linked protein glycosylation is conserved throughout the three domains of life and influences protein function, stability, and protein complex formation. N-Linked glycosylation is an essential process in Eukaryotes; however, although N-glycosylation affects multiple cellular processes in Archaea and Bacteria, it is not needed for cell survival. Methods for the analyses of N-glycosylation in eukaryotes are well established, but comparable techniques for the analyses of the pathways in Bacteria and Archaea are needed. In this chapter we describe new methods for the detection and analyses of N-linked, and the recently discovered free oligosaccharides (fOS), from whole cell lysates of Campylobacter jejuni using non-specific pronase E digestion and permethylation followed by mass spectrometry. We also describe the expression and immunodetection of the model N-glycoprotein, AcrA, fused to a hexa-histidine tag to follow protein glycosylation in C. jejuni. This chapter concludes with the recent demonstration that high-resolution magic angle spinning NMR of intact bacterial cells provides a rapid, non-invasive method for analyzing fOS in C. jejuni in vivo. This combination of techniques provides a powerful tool for the exploration, quantification, and structural analyses of N-linked and free oligosaccharides in the bacterial system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helenius, A. and Aebi, M. (2001) Intracellular functions of N-linked glycans. Science 291, 2364–2369.

    Article  CAS  PubMed  Google Scholar 

  2. Abu-Qarn, M., Yurist-Doutsch, S., Giordano, A., Trauner, A., Morris, H. R., Hitchen, P., Medalia, O., Dell, A., and Eichler, J. (2007) Haloferax volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer. J. Mol. Biol. 374, 1224–1236.

    Article  CAS  PubMed  Google Scholar 

  3. Chaban, B., Voisin, S., Kelly, J., Logan, S. M., and Jarrell, K. F. (2006) Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea. Mol. Microbiol. 61, 259–268.

    Article  CAS  PubMed  Google Scholar 

  4. Yurist-Doutsch, S., Chaban, B., VanDyke, D. J., Jarrell, K. F., and Eichler, J. (2008) Sweet to the extreme: protein glycosylation in Archaea. Mol. Microbiol. 68, 1079–1084.

    Article  CAS  PubMed  Google Scholar 

  5. Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., Panico, M., Morris, H. R., Dell, A., Wren, B. W., and Aebi, M. (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793.

    Article  CAS  PubMed  Google Scholar 

  6. Szymanski, C. M., and Wren, B. W. (2005) Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3, 225–237.

    Article  CAS  PubMed  Google Scholar 

  7. Nothaft, H., Amber, S., Aebi, M., and Szymanski, C. M. (2008) N-Linked Protein Glycosylation in Campylobacter. In: Campylobacter (3rd edn.) Nachamkin, I., Szymanski, C. M., and Blaser, M. J. (eds). Washington, DC: ASM Press, pp. 447–469.

    Google Scholar 

  8. Hendrixson, D. R. and DiRita, V. J. (2004) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52, 471–484.

    Article  CAS  PubMed  Google Scholar 

  9. Larsen, J. C., Szymanski, C., and Guerry, P. (2004) N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176. J. Bacteriol. 186, 6508–6514.

    Article  CAS  PubMed  Google Scholar 

  10. Szymanski, C. M., Goon, S., Allan, B., and Guerry, P. (2005) Protein glycosylation in Campylobacter. In: Campylobacter: Molecular and Cellular Biology. Ketley, J. and Konkel, M. (eds). Norfolk: Horizon Bioscience, pp. 259–273.

    Google Scholar 

  11. Szymanski, C. M., Logan, S. M., Linton, D., and Wren, B. W. (2003) Campylobacter – a tale of two protein glycosylation systems. Trends Microbiol. 11, 233–238.

    CAS  PubMed  Google Scholar 

  12. Szymanski, C. M., Yao, R., Ewing, C. P., Trust, T. J., and Guerry, P. (1999) Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030.

    Article  CAS  PubMed  Google Scholar 

  13. Kowarik, M., Young, N. M., Numao, S., Schulz, B. L., Hug, I., Callewaert, N., Mills, D. C., Watson, D. C., Hernandez, M., Kelly, J. F., Wacker, M., and Aebi, M. (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25, 1957–1966.

    Article  CAS  PubMed  Google Scholar 

  14. Young, N. M., Brisson, J. -R., Kelly, J., Watson, D. C., Tessier, L., Lanthier, P. H., Jarrell, H. C., Cadotte, N., St Michael, F., Aberg, E., and Szymanski, C. M. (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277, 42530–42539.

    Article  CAS  PubMed  Google Scholar 

  15. Alaimo, C., Catrein, I., Morf, L., Marolda, C. L., Callewaert, N., Valvano, M. A., Feldman, M. F., and Aebi, M. (2006) Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J. 25, 967–976.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, X., McNally, D. J., Nothaft, H., Szymanski, C. M., Brisson, J. -R., and Li, J. (2006) Mass spectrometry-based glycomics strategy for exploring N-linked glycosylation in eukaryotes and bacteria. Anal. Chem. 78, 6081–6087.

    Article  CAS  PubMed  Google Scholar 

  17. Abu-Qarn, M., Eichler, J., and Sharon, N. (2008) Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr. Opin. Struct. Biol. 18, 544–550.

    Article  CAS  PubMed  Google Scholar 

  18. Glover, K. J., Weerapana, E., and Imperiali, B. (2005) In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. U. S. A. 102, 14255–14259.

    Article  CAS  PubMed  Google Scholar 

  19. Weerapana, E., Glover, K. J., Chen, M. M., and Imperiali, B. (2005) Investigating bacterial N-linked glycosylation: synthesis and glycosyl acceptor activity of the undecaprenyl pyrophosphate-linked bacillosamine. J. Am. Chem. Soc. 127, 13766–13767.

    Article  CAS  PubMed  Google Scholar 

  20. Merry, T., Taverna, M., Tran, T., and Harvey, D. (2002) Analyses of glycans of recombinant glycoproteins. In: Cell Engineering. Al-Rubeai, M. (ed). Dordrecht: Springer, pp. 1–60.

    Chapter  Google Scholar 

  21. Kelly, J., Jarrell, H., Millar, L., Tessier, L., Fiori, L. M., Lau, P. C., Allan, B., and Szymanski, C. M. (2006) Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol. 188, 2427–2434.

    Article  CAS  PubMed  Google Scholar 

  22. Linton, D., Allan, E., Karlyshev, A. V., Cronshaw, A. D., and Wren, B. W. (2002) Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol. Microbiol. 43, 497–508.

    Article  CAS  PubMed  Google Scholar 

  23. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual (3rd edn). Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  24. Labigne-Roussel, A., Harel, J., and Tompkins, L. (1987) Gene transfer from Escherichia coli to Campylobacter species: development of shuttle vectors for genetic analysis of Campylobacter jejuni. J. Bacteriol. 169, 5320–5323.

    CAS  PubMed  Google Scholar 

  25. St Michael, F., Szymanski, C. M., Li, J., Chan, K. H., Khieu, N. H., Larocque, S., Wakarchuk, W. W., Brisson, J. -R., and Monteiro, M. A. (2002) The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. Eur. J. Biochem. 269, 5119–5136.

    Article  CAS  PubMed  Google Scholar 

  26. Szymanski, C. M., Michael, F. S., Jarrell, H. C., Li, J., Gilbert, M., Larocque, S., Vinogradov, E., and Brisson, J. -R. (2003) Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J. Biol. Chem. 278, 24509–24520.

    Article  CAS  PubMed  Google Scholar 

  27. Meiboom, S. and Gill, D. (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691.

    Article  CAS  Google Scholar 

  28. Brisson, J. -R., Sue, S. C., Wu, W. G., McManus, G., Nghia, P. T., and Uhrin, D. (2002) NMR of carbohydrates: 1D homonuclear selective methods. In: NMR Spectroscopy of Glycoconjugates. Jimenez-Barbero, J. and Peters, T. (eds). Weinhem, Germany: Wiley-VCH, pp. 59–93.

    Chapter  Google Scholar 

  29. Uhrín, D. and Brisson, J. -R. (2000) Structure determination of microbial polysaccharides by high resolution NMR spectroscopy. In: NMR in Microbiology: Theory and Applications. Barbotin, J. N. and Portais, J. C. (eds). Wymondham, UK: Horizon Scientific Press, pp. 165–210.

    Google Scholar 

  30. McNally, D. J., Lamoureux, M., Li, J., Kelly, J., Brisson, J. -R., Szymanski, C. M., and Jarrell, H. C. (2006) HR-MAS NMR studies of 15N labeled cells confirm the structure of the O-methyl phosphoramidate CPS modification in Campylobacter jejuni and provide insight into its biosynthesis. Can. J. Chem. 84, 676–684.

    Article  CAS  Google Scholar 

  31. McNally, D. J., Lamoureux, M. P., Karlyshev, A. V., Fiori, L. M., Li, J., Thacker, G., Coleman, R. A., Khieu, N. H., Wren, B. W., Brisson, J. -R., Jarrell, H. C., and Szymanski, C. M. (2007) Commonality and biosynthesis of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni. J. Biol. Chem. 282, 28566–28576.

    Article  CAS  PubMed  Google Scholar 

  32. McNally, D. J., Jarrell, H. C., Khieu, N. H., Li, J., Vinogradov, E., Whitfield, D. M., Szymanski, C. M., and Brisson, J. -R. (2006) The HS:19 serostrain of Campylobacter jejuni has a hyaluronic acid-type capsular polysaccharide with a nonstoichiometric sorbose branch and O-methyl phosphoramidate group. Febs J. 273, 3975–3989.

    Article  CAS  PubMed  Google Scholar 

  33. McNally, D. J., Jarrell, H. C., Li, J., Khieu, N. H., Vinogradov, E., Szymanski, C. M., and Brisson, J. -R. (2005) The HS:1 serostrain of Campylobacter jejuni has a complex teichoic acid-like capsular polysaccharide with nonstoichiometric fructofuranose branches and O-methyl phosphoramidate groups. Febs J. 272, 4407–4422.

    Article  CAS  PubMed  Google Scholar 

  34. Guerry, P., Ewing, C. P., Schoenhofen, I. C., and Logan, S. M. (2007) Protein glycosylation in Campylobacter jejuni: partial suppression of pglF by mutation of pseC. J. Bacteriol. 189, 6731–6733.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to dedicate this chapter to our fantastic mentors and colleagues at the National Research Council – Institute for Biological Sciences who are always pushing forward the boundaries in glycomics. In particular, for these studies, we thank Jean-Robert Brisson, Harold Jarrell and Jianjun Li. This work was funded by the NRC Genomics and Health Initiative.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Nothaft, H., Liu, X., McNally, D.J., Szymanski, C.M. (2010). N-Linked Protein Glycosylation in a Bacterial System. In: Li, J. (eds) Functional Glycomics. Methods in Molecular Biology, vol 600. Humana Press. https://doi.org/10.1007/978-1-60761-454-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-454-8_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-453-1

  • Online ISBN: 978-1-60761-454-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics