Skip to main content

Characterization of Lipid-Linked Oligosaccharides by Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 600))

Abstract

N- Glycosylation of proteins is recognized as one of the most common post-translational modifications. Until recently it was believed that N-glycosylation occurred exclusively in eukaryotes until the discovery of the general protein glycosylation pathway (Pgl) in Campylobacter jejuni. We have developed a new glycomics strategy based on lectin-affinity capture of lipid-linked oligosaccharides (LLOs) coupled to capillary electrophoresis mass spectrometry. The LLO intermediates of the C. jejuni Pgl pathway were used to validate the methodology and to better characterize the bacterial model system for protein N-glycosylation. This method provides a rapid, non-radioactive approach for the characterization of intermediates in polysaccharide biosynthesis and is a useful tool for glycoengineering efforts in bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Abu-Qarn, M., Eichler, J., and Sharon, N. (2008) Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr. Opin. Struct. Biol. 18, 544–550.

    Article  CAS  PubMed  Google Scholar 

  2. Eichler, J. and Adams, M. W. W. (2005) Posttranslational Protein Modification in Archaea. Microbiol. Mol. Biol. Rev. 69, 393–425.

    Article  CAS  PubMed  Google Scholar 

  3. Messner, P. (2004) Prokaryotic glycoproteins: unexplored but important. J. Bacteriol. 186, 2517–2519.

    Article  CAS  PubMed  Google Scholar 

  4. Weerapana, E. and Imperiali, B. (2006) Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 16, 91R–R101.

    Article  CAS  PubMed  Google Scholar 

  5. Szymanski, C. M. and Wren, B. W. (2005) Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3, 225–237.

    Article  CAS  PubMed  Google Scholar 

  6. Szymanski, C. M., Yao, R., Ewing, C. P., Trust, T. J., and Guerry, P. (1999) Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030.

    Article  CAS  PubMed  Google Scholar 

  7. Banerjee, A. and Ghosh, S. K. (2003) The role of pilin glycan in neisserial pathogenesis. Mol. Cell Biochem. 253, 179–190.

    Article  CAS  PubMed  Google Scholar 

  8. Schirm, M., Soo, E. C., Aubry, A. J., Austin, J., Thibault, P., and Logan, S. M. (2003) Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 48, 1579–1592.

    Article  CAS  PubMed  Google Scholar 

  9. Castric, P., Cassels, F. J., and Carlson, R. W. (2001) Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J. Biol. Chem. 276, 26479–26485.

    Article  CAS  PubMed  Google Scholar 

  10. Spiro, R. G. (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R–R456.

    Article  CAS  PubMed  Google Scholar 

  11. Power, P. M., Seib, K. L., and Jennings, M. P. (2006) Pilin glycosylation in Neisseria meningitidis occurs by a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia coli. Biochem. Biophys. Res. Commun. 347, 904–908.

    Article  CAS  PubMed  Google Scholar 

  12. Chaban, B., Voisin, S., Kelly, J., Logan, S. M., and Jarrell, K. F. (2006) Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea. Mol. Microbiol. 61, 259–268.

    Article  CAS  PubMed  Google Scholar 

  13. Faridmoayer, A., Fentabil, M. A., Mills, D. C., Klassen, J. S., and Feldman, M. F. (2007) Functional characterization of bacterial oligosaccharyltransferases involved in O-linked protein glycosylation. J. Bacteriol. 189, 8088–8098.

    Article  CAS  PubMed  Google Scholar 

  14. Young, N. M., Brisson, J.-R., Kelly, J., Watson, D. C., Tessier, L., Lanthier, P. H., Jarrell, H. C., Cadotte, N., St Michael, F., Aberg, E., and Szymanski, C. M. (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277, 42530–42539.

    Article  CAS  PubMed  Google Scholar 

  15. Kowarik, M., Young, N. M., Numao, S., Schulz, B. L., Hug, I., Callewaert, N., Mills, D. C., Watson, D. C., Hernandez, M., Kelly, J. F., Wacker, M., and Aebi, M. (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25, 1957–1966.

    Article  CAS  PubMed  Google Scholar 

  16. Spiro, R. G., Spiro, M. J., and Bhoyroo, V. D. (1976) Lipid-saccharide intermediates in glycoprotein biosynthesis. II. Studies on the structure of an oligosaccharide-lipid from thyroid. J. Biol. Chem. 251, 6409–6419.

    CAS  PubMed  Google Scholar 

  17. Kelleher, D. J., Karaoglu, D., and Gilmore, R. (2001) Large-scale isolation of dolichol-linked oligosaccharides with homogeneous oligosaccharide structures: determination of steady-state dolichol-linked oligosaccharide compositions. Glycobiology 11, 321–333.

    Article  CAS  PubMed  Google Scholar 

  18. Gao, N. and Lehrman, M. A. (2002) Analyses of dolichol pyrophosphate-linked oligosaccharides in cell cultures and tissues by fluorophore-assisted carbohydrate electrophoresis. Glycobiology 12, 353–360.

    Article  CAS  PubMed  Google Scholar 

  19. Moini, M. (2002) Capillary electrophoresis mass spectrometry and its application to the analysis of biological mixtures. Anal. Bioanal. Chem. 373, 466–480.

    Article  CAS  PubMed  Google Scholar 

  20. Li, J., Wang, Z., and Altman, E. (2005) In-source fragmentation and analysis of polysaccharides by capillary electrophoresis–mass spectrometry. Rapid Commun. Mass Spectrom. 19, 1305–1314.

    Article  CAS  PubMed  Google Scholar 

  21. Li, J. and Richards, J. C. (2007) Application of capillary electrophoresis mass spectrometry to the characterization of bacterial lipopolysaccharides. Mass Spectrom. Rev. 26, 35–50.

    Article  PubMed  CAS  Google Scholar 

  22. Li, Y. L., Su, X., Stahl, P. D., and Gross, M. L. (2007) Quantification of diacylglycerol molecular species in biological samples by electrospray ionization mass spectrometry after one-step derivatization. Anal. Chem. 79, 1569–1574.

    Article  CAS  PubMed  Google Scholar 

  23. Curatolo, W., Yau, A. O., Small, D. M., and Sears, B. (1978) Lectin-induced agglutination of phospholipid/glycolipid vesicles. Biochemistry 17, 5740–5744.

    Article  CAS  PubMed  Google Scholar 

  24. Smith, D. F. (1983) Glycolipid-lectin interactions: detection by direct binding of 125I-lectins to thin layer chromatograms. Biochem. Biophys. Res. Commun. 115, 360–367.

    Article  CAS  PubMed  Google Scholar 

  25. Smith, D. F. and Torres, B. V. (1989) Lectin affinity chromatography of glycolipids and glycolipid-derived oligosaccharides. Methods Enzymol. 179, 30–45.

    Article  CAS  PubMed  Google Scholar 

  26. Torres, B. V., McCrumb, D. K., and Smith, D. F. (1988) Glycolipid-lectin interactions: reactivity of lectins from Helix pomatia, Wisteria floribunda, and Dolichos biflorus with glycolipids containing N-acetylgalactosamine. Arch. Biochem. Biophys. 262, 1–11.

    Article  CAS  PubMed  Google Scholar 

  27. Linton, D., Allan, E., Karlyshev, A. V., Cronshaw, A. D., and Wren, B. W. (2002) Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol. Microbiol. 43, 497–508.

    Article  CAS  PubMed  Google Scholar 

  28. Kelly, J., Jarrell, H., Millar, L., Tessier, L., Fiori, L. M., Lau, P. C., Allan, B., and Szymanski, C. M. (2006) Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol. 188, 2427–2434.

    Article  CAS  PubMed  Google Scholar 

  29. Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., Chillingworth, T., Davies, R. M., Feltwell, T., Holroyd, S., Jagels, K., Karlyshev, A. V., Moule, S., Pallen, M. J., Penn, C. W., Quail, M. A., Rajandream, M. A., Rutherford, K. M., van Vliet, A. H., Whitehead, S., and Barrell, B. G. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.

    Article  CAS  PubMed  Google Scholar 

  30. Chen, M. M., Weerapana, E., Ciepichal, E., Stupak, J., Reid, C. W., Swiezewska, E., and Imperiali, B. (2007) Polyisoprenol Specificity in the Campylobacter jejuni N-Linked Glycosylation Pathway. Biochemistry 46, 14342–14348.

    Article  CAS  PubMed  Google Scholar 

  31. Glover, K. J., Weerapana, E., and Imperiali, B. (2005) In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. U. S. A. 102, 14255–14259.

    Article  CAS  PubMed  Google Scholar 

  32. Reid, C. W., Stupak, J., Chen, M. M., Imperiali, B., Li, J., and Szymanski, C. M. (2008) Affinity-capture tandem mass spectrometric characterization of polyprenyl-linked oligosaccharides: tool to study protein N-glycosylation pathways. Anal. Chem. 80, 5468–5475.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Reid, C.W., Stupak, J., Szymanski, C.M. (2010). Characterization of Lipid-Linked Oligosaccharides by Mass Spectrometry. In: Li, J. (eds) Functional Glycomics. Methods in Molecular Biology, vol 600. Humana Press. https://doi.org/10.1007/978-1-60761-454-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-454-8_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-453-1

  • Online ISBN: 978-1-60761-454-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics