Skip to main content
Book cover

Liposomes pp 105–114Cite as

Electroformation of Giant Unilamellar Vesicles from Native Membranes and Organic Lipid Mixtures for the Study of Lipid Domains under Physiological Ionic-Strength Conditions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 606))

Abstract

Giant unilamellar vesicles (GUVs) constitute a cell-sized model membrane system that allows direct visualization of particular membrane-related phenomena, such as domain formation, at the level of single vesicles using fluorescence microscopy-related techniques. Currently available protocols for the preparation of GUVs work only at very low salt concentrations, thus precluding experimentation under physiological conditions. In addition, the GUVs thus obtained lack membrane compositional asymmetry. Here we show how to prepare GUVs using a new protocol based on the electroformation method either from native membranes or organic lipid mixtures at physiological ionic strength. Additionally, we describe methods to test whether membrane proteins and glycosphingolipids preserve their natural orientation after electroformation of GUVs composed of native membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bagatolli LA (2006) To see or not to see: Lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758:1541-1556

    Article  CAS  PubMed  Google Scholar 

  2. Menger FM, Keiper JS (1998) Chemistry and physics of giant vesicles as biomembrane models. Curr Opin Chem Biol 2:726-732

    Article  CAS  PubMed  Google Scholar 

  3. Veatch SL, Keller SL (2005) Seeing spots: Complex phase behavior in simple membranes. Biochim Biophys Acta 1746:172-185

    Article  CAS  PubMed  Google Scholar 

  4. Ambroggio EE, Separovic F, Bowie JH, Fidelio GD, Bagatolli LA (2005) Direct visualization of membrane leakage induced by the antibiotic peptides: Maculatin, citropin, and aurein. Biophys J 89:1874-1881

    Article  CAS  PubMed  Google Scholar 

  5. Bernardino de la Serna J, Perez-Gil J, Simonsen AC, Bagatolli LA (2004) Cholesterol rules: Direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J Biol Chem 279:40715-40722

    Article  PubMed  Google Scholar 

  6. Kahya N, Schwille P (2006) Fluorescence correlation studies of lipid domains in model membranes. Mol Membr Biol 23:29-39

    Article  CAS  PubMed  Google Scholar 

  7. Bagatolli LA, Parasassi T, Gratton E (2000) Giant phospholipid vesicles: Comparison among the whole lipid sample characteristics using different preparation methods: A two photon fluorescence microscopy study. Chem Phys Lipids 105:135-147

    Article  CAS  PubMed  Google Scholar 

  8. Akashi K, Miyata H, Itoh H, Kinosita K Jr (1996) Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys J 71:3242-3250

    Article  CAS  PubMed  Google Scholar 

  9. Baumgart T, Hammond AT, Sengupta PS, Hess T, Holowka DA, Baird BA, Webb WW (2007) Large scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci USA 104:3165-3170

    Article  CAS  PubMed  Google Scholar 

  10. Pautot S, Frisken BJ, Weitz DA (2003) Engineering asymmetric vesicles. Proc Natl Acad Sci USA 100:10718-10721

    Article  CAS  PubMed  Google Scholar 

  11. Pott T, Bouvrais H, Méléard P (2008) Giant unilamellar vesicle formation under physiologically relevant conditions. Chem Phys Lip 154:115-119

    Article  CAS  Google Scholar 

  12. Montes LR, Alonso A, Goñi FM, Bagatolli LA (2007) Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J 10:3548-3554

    Article  Google Scholar 

  13. Steck TL, Kant JA (1974) Preparation of impermeable ghosts and insideout vesicles from human erythrocyte membranes. Meth Enzymol 31:172-180

    Article  CAS  PubMed  Google Scholar 

  14. Schow G, Passow H (1973) Preparation and properties of human erythrocyte ghosts. Mol Cell Biochem 2:197-217

    Article  Google Scholar 

  15. Fiske HC, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375-400

    CAS  Google Scholar 

  16. Böttcher C, van Gent C, Fries C (1961) A rapid and sensitive sub-micro phosphorous determination. Anal Chim Acta 1061:297-303

    Google Scholar 

  17. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911-917

    CAS  PubMed  Google Scholar 

  18. Fidorra M, Duelund L, Leidy C, Simonsen AC, Bagatolli LA (2006) Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol. Biophys J 90:4437-4451

    Article  CAS  PubMed  Google Scholar 

  19. Kaufmann S, Tanaka M (2003) Cell adhesion onto highly curved surfaces: One-step immobilization of human erythrocyte membranes on silica beads. Chemphyschem 4:699-704

    Article  CAS  PubMed  Google Scholar 

  20. Sot J, Ibarguren M, Busto JV, Montes LR, Goñi FM, Alonso A (2008) Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles. FEBS Lett 582:3230-3236

    Article  CAS  PubMed  Google Scholar 

  21. Montes LR, López DJ, Sot J, Bagatolli LA, Stonehouse MJ, Vasil ML, Wu BX, Hannun YA, Goñi FM, Alonso A (2008) Ceramide-enriched membrane domains in red blood cells and the mechanism of sphingomyelinase-induced hot-cold hemolysis. Biochemistry 47:11222-11230.

    Google Scholar 

Download references

Acknowledgements

This work was supported by FNU, Denmark (272-06-0511), the Danish National Research Foundation, the Spanish Ministerio de Educación y Ciencia (BFU 2005-0695 and BFU 2004-02955), and the University of the Basque Country (GIU06/42).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Montes, LR. et al. (2010). Electroformation of Giant Unilamellar Vesicles from Native Membranes and Organic Lipid Mixtures for the Study of Lipid Domains under Physiological Ionic-Strength Conditions. In: Weissig, V. (eds) Liposomes. Methods in Molecular Biology™, vol 606. Humana Press. https://doi.org/10.1007/978-1-60761-447-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-447-0_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-446-3

  • Online ISBN: 978-1-60761-447-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics