Skip to main content

The Application of Molecular Techniques to the Study of Wastewater Treatment Systems

  • Protocol
  • First Online:
Bioremediation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 599))

Abstract

Wastewater treatment systems tend to be engineered to select for a few functional microbial groups that may be organized in various spatial structures such as activated sludge flocs, biofilm or granules and represented by single coherent phylogenic groups such as ammonia-oxidizing bacteria (AOB) and polyphosphate-accumulating organisms (PAO). In order to monitor and control engineered microbial structure in wastewater treatment systems, it is necessary to understand the relationships between the microbial community structure and the process performance. This review focuses on bacterial communities in wastewater treatment processes, the quantity of microorganisms and structure of microbial consortia in wastewater treatment bioreactors. The review shows that the application of molecular techniques in studies of engineered environmental systems has increased our insight into the vast diversity and interaction of microorganisms present in wastewater treatment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan, Z. and Blackall, L.L. (2002) Sludge population optimization: a new dimension for the control of biological wastewater treatment systems. Water Res. 36, 482–490.

    Article  CAS  Google Scholar 

  2. Wagner, M., Rath, G., Amann, R., Koops, H.P. and Schleifer, K.H. (1995) In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18, 251–64.

    CAS  Google Scholar 

  3. Lee, N., La Cour Janssen, J., Aspegren, H., Henze, M.N.P.H. and Wagner, M. (2002) Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated without nitrogen removal. Water Sci. Technol. 46, 163–170.

    CAS  Google Scholar 

  4. Schmid, M., Thill, A., Purkhold, U., Walcher, M., Bottero, J.Y., Ginestet, P., Nielsen, P.H., Wuertz, S. and Wagner, M. (2003) Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis. Water Res. 37, 2043–2052.

    Article  CAS  Google Scholar 

  5. Wilén, B.M., Onuki, M., Hermanssonc, M., Lumleyd, D. and Minoa, T. (2008) Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability. Water Res. 42, 2300–2308.

    Article  CAS  Google Scholar 

  6. Morgan-Sagastume, F. and Allen, D.G. (2003) Effects of temperature transient conditions on aerobic biological treatment of wastewater. Water Res. 37, 3590–3601.

    Article  CAS  Google Scholar 

  7. Henriques, I.D.S. and Love, N.G. (2007) The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Res. 41, 4177–4185.

    Article  CAS  Google Scholar 

  8. Frølund, B., Palmgren, R., Keiding, K. and Nielsen, P.H. (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 30, 1749–1758.

    Article  Google Scholar 

  9. Laspidou, C.S. and Rittmann, B.E. (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36, 2711–2720.

    Article  CAS  Google Scholar 

  10. Raszka, A., Chorvatova, M. and Wanner, J. (2006) The role and significance of extracellular polymers in activated sludge. Part I: literature review. Acta Hydrochim. Hydrobiol. 34, 411–424.

    Article  CAS  Google Scholar 

  11. Wilén, B.M., Nielsen, J.L., Keiding, K. and Nielsen P.H. (2000) Influence of microbial activity on the stability of activated sludge flocs, Colloid Surface B. 18, 145–156.

    Article  Google Scholar 

  12. Jorand, F., Zartarian, F., Thomas, F., Block, J.C., Bottero, J.Y., Villemin, G., Urbain, V. and Manem, J. (1995) Chemical and structural (2D) linkage between bacteria within activated sludge flocs. Water Res. 29, 1639–1647.

    Article  CAS  Google Scholar 

  13. Wilén, B.M., Onuki, M., Hermansson, M., Lumley, D. and Mino, T. (2006) Influence of flocculation and settling properties of activated sludge in relation to secondary settler performance. Water Sci. Technol. 54, 147–155.

    Google Scholar 

  14. Nancharaiah, Y.V., Joshi, H.M., Krishna Mohan, T.V., Venugopalan, V.P. and Narasimhan, S.V. (2008) Formation of aerobic granules in the presence of a synthetic chelating agent. Environ. Pollut. 153, 37–43.

    Article  CAS  Google Scholar 

  15. Wijeyekoon, S., Mino, T., Satoh, H. and Matsuo, T. (2000) Growth and novel structural features of tubular biofilms produced under different hydrodynamic conditions. Water Sci. Technol. 41, 4–5, 129–138.

    CAS  Google Scholar 

  16. de Beer, D. and Stoodley, P. (1995) Relation between the structure of an aerobic biofilm and transport phenomena. Water Sci. Technol. 32, 8, 11–18.

    Article  Google Scholar 

  17. van Loosdrecht, M., Eikelboom, D., Gjaltema, A., Mulder, A., Tijhuis, L. and Heijnen, J.J. (1995) Biofilm structures. Water Sci. Technol. 32, 8, 35–43.

    Article  Google Scholar 

  18. Vieira, M., Melo, L. and Pinheiro, M. (1993) Biofilm formation: hydrodynamic effects on internal diffusion and structure. Biofouling. 7, 67–80.

    Article  CAS  Google Scholar 

  19. Wuertz, S., Okabe, S. and Hausner, M. (2004) Microbial communities and their interactions in biofilm systems: an overview. Water Sci. Technol. 49, 11–12, 327–336.

    CAS  Google Scholar 

  20. Nicolella, C., van Loosdrecht, M.C.M. and Heijnen, S.J. (2000) Particle-based biofilm reactor technology. Trends Biotechnol. 18, 312–320.

    Article  CAS  Google Scholar 

  21. Zielińska, M. and Wojnowska-Barył a, I. (2007) Nitrification by biomass immobilized in porous carriers. J. Environ. Eng. Sci. 6, 463–467.

    Article  CAS  Google Scholar 

  22. Tay, J.H., Tay, S.T.L., Ivanov, V., Pan, S. and Liu, Q.S. (2003) Biomass and porosity profile in microbial granules sued for aerobic wastewater treatment. Lett. Appl. Microbiol. 36, 297–301.

    Article  Google Scholar 

  23. Moy, B.Y.P., Tay, J.H., Toh, S.K., Liu, Y. and Tay, S.T.L. (2002) High organic loading influences the physical characteristics of aerobic sludge granules. Lett. Appl. Microbiol. 34, 407–412.

    Article  Google Scholar 

  24. Beun, J.J., Hendriks, A., van Loosdrecht, M., Morgenroth, E., Wilderer, P.A. and Heijnen, J.J. (1999) Aerobic granulation in a sequencing batch reactor. Water Res. 33, 2283–2290.

    Article  CAS  Google Scholar 

  25. Limbergen, H.V., Top, E.M. and Verstraete, W. (1998) Bioaugmentation in activated sludge: current features and future perspectives. Appl. Microbiol. Biot. 50, 16–23.

    Article  Google Scholar 

  26. Ivanov, V., Tay, J.H., Tay, S.T.L. and Jiang, H.L. (2004) Removal of microparticles by microbial granules used for aerobic wastewater treatment. Water Sci. Technol. 50, 147–154.

    CAS  Google Scholar 

  27. Tay, S.T.L., Moy, B.Y.P., Jiang, H.L. and Tay, J.H. (2005) Rapid cultivation of stable aerobic phenol-degrading granules using acetate-fed granules as microbial seed. J. Biotechnol. 115, 387–395.

    Article  CAS  Google Scholar 

  28. Liu, Y., Yang, S.F. and Tay, J.H. (2004) Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria. J. Biotechnol. 108, 161–169.

    Article  CAS  Google Scholar 

  29. Nancharaiah, Y.V., Schwarzenbeck, N., Mohan, T.V.K., Narasimhan, S.V., Wilderer, P.A. and Venugopalan, V.P. (2006) Biodegradation of nitrilotriacetic acid (NTA) and ferrice NTA complex by aerobic microbial granules. Water Res. 40, 1539–1546.

    Article  CAS  Google Scholar 

  30. Ivanov, V., Wang, X.H., Tay, S.T.L. and Tay, J.H. (2006) Bioaugmentation and enhanced formation of microbial granules used in aerobic wastewater treatment. Appl. Microbiol. Biot. 70, 374–381.

    Article  CAS  Google Scholar 

  31. Qin, L. and Liu, Y. (2006) Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic-anaerobic sequencing batch reactor. Chemosphere. 63, 926–933.

    Article  CAS  Google Scholar 

  32. Liu, Y. and Tay, J.H. (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv. 22, 533–563.

    Article  CAS  Google Scholar 

  33. Tay, S.T.L., Ivanov, V., Yi, S., Zhuang, W.Q. and Tay, J.H. (2002) Presence of anaerobic Bacteroides in aerobically grown microbial granules. Microbial. Ecol. 44, 278–285.

    Article  CAS  Google Scholar 

  34. Toh, S.K., Tay, J.H., Moy, B.Y.P., Ivanov, V. and Tay, S.T.L. (2003) Size-effect on the physical characteristics of the aerobic granule in a SBR. Appl. Microbiol. Biot. 60, 687–695.

    CAS  Google Scholar 

  35. Porteous, L.A., Seidler, R.J. and Watrud, L.S. (1997) An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications. Mol. Ecol. 6, 787–791.

    Article  CAS  Google Scholar 

  36. Carrigg, C., Rice, O., Kavanagh, S., Collins, G. and O’Flaherty, V. (2007) DNA extraction method affects microbial community profiles from soils and sediment. Appl. Microbiol. Biot. 77, 955–964.

    Article  CAS  Google Scholar 

  37. Kuske, C.R., Banton, K.L., Adorada, D.L., Stark, P.C., Hill, K.K. and Jackson, P.J. (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl. Environ. Microbiol. 64, 2463–2472.

    CAS  Google Scholar 

  38. Miller, D.N., Bryant, J.E., Madsen, E.L. and Ghiorse, W.C. (1999) Evaluation and optimisation of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715–4724.

    CAS  Google Scholar 

  39. Ogram, A. (2000) Soil molecular microbial ecology at age 20: methodological challenges for the future. Soil Biol. Biochem. 32,1499–1504.

    Article  CAS  Google Scholar 

  40. Niemi, R.M., Heiskanen, I., Wallenius, K. and Lindstrom, K. (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J. Microbiol. Meth. 45, 155–165.

    Article  Google Scholar 

  41. Kemp, B.M., Monroe, C. and Smith, D.G. (2006) Repeat silica extraction: a simple technique for the removal of PCR inhibitors from DNA extracts. J. Archaeol. Sci. 33, 1680–1689.

    Article  Google Scholar 

  42. Roose-Amsaleg. C.L., Garnier-Sillam. E. and Harry, M. (2001) Extraction and purification of microbial DNA from soil and sediment samples. Appl. Soil Ecol. 18, 47–60.

    Article  Google Scholar 

  43. Thakuria, D., Schmidt, O., Mac Siurtain, M., Egan, D. and Doohan, F.M. (2008) Importance of DNA quality in comparative soil microbial community structure analyses. Soil Biol. Biochem. 40, 1390–1403.

    Article  CAS  Google Scholar 

  44. de Lipthay, J.R, Enzinger, C., Johnsen, K., Aamanda, J. and Sø rensen, S.J. (2004) Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biol. Biochem. 36, 1607–1614.

    Article  CAS  Google Scholar 

  45. Griffiths, R.I., Whiteley, A.S. and O’Donnell, A.G. (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491.

    Article  CAS  Google Scholar 

  46. Bourrain, M., Achouak, W., Urbain, V. and Heulin, T. (1999) DNA extraction from activated sludges. Curr. Microbiol. 38, 315–319.

    Article  CAS  Google Scholar 

  47. Bej, A.K., Mahbubani, M.H., Dicesare, J.L. and Atlas, R.M. (1991) Polymerase chain reaction-gene probe detection of microorganisms by using filter concentrated samples. Appl. Environ. Microbiol. 57, 3529–3534.

    CAS  Google Scholar 

  48. Tsai, Y.L. and Olson, B.H. (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 57, 1070–1074.

    CAS  Google Scholar 

  49. Quan, H., Shi, H., Liu, H., Lv, P. and Qian, Y. (2004) Enhancement of 2,4-dichlorophenol degradation in conventional activated sludge systems bioaugmented with mixed special culture. Water Res. 38, 245–253.

    Article  CAS  Google Scholar 

  50. Jiang, H.L., Maszenan, A.M., Tay, J.H. (2007) Bioaugmentation and coexistence of two functionally similar bacterial strains in aerobic granules. Appl. Microbiol. Biotechnol. 75, 1191–1200.

    Article  CAS  Google Scholar 

  51. Adav, S.S., Chen, M.Y., Lee, D.J. and Ren, N.Q. (2007) Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis. Biotechnol. Bioeng. 96, 5, 844–852.

    Article  CAS  Google Scholar 

  52. Koch, G., Egli, K., van der Meer, J.R. and Siegrist, H. (2000) Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor. Water Sci. Technol. 41, 4–5, 191–198.

    CAS  Google Scholar 

  53. Tsuneda, S., Miyoshi, T., Aoi, Y. and Hirata A. (2000) Tailoring of highly efficient nitrifying biofilms in fluidized bed for ammonia-rich industrial wastewater treatment. Water Sci. Technol. 42, 3–4, 357–362.

    CAS  Google Scholar 

  54. Jang, A., Bishop, P.L., Okabe, S., Lee, S.G. and Kim I.S. (2002) Effect of dissolved oxygen concentration on the biofilm and in situ analysis by fluorescence in situ hybridization (FISH) and microelectrodes. Water Sci. Technol. 47, 1, 49–57.

    Google Scholar 

  55. Tsuneda, S., Nagano, T., Hoshino, T., Ejiri, Y., Noda, N. and Hirata, A. (2003) Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res. 37, 4965–4973.

    Article  CAS  Google Scholar 

  56. Onuki, M., Satoh, H., Mino, T. and Matsuo, T. (2000) Application of molecular methods to microbial community analysis of activated sludge. Water Sci. Technol. 42, 3–4, 17–22.

    Google Scholar 

  57. Biesterfeld, S., Figueroa, L., Hernandez, M. and Russell P. (2001) Quantification of nitrifying bacterial populations in a full-scale nitrifying trickling filter using fluorescent in situ hybridization. Water Environ. Res. 73, 3, 329–338.

    Article  CAS  Google Scholar 

  58. Wagner, M., Rath, G., Koops, H.P., Flood, J. and Amann, R. (1996) In-situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci. Technol. 34, 1–2, 237–244.

    CAS  Google Scholar 

  59. Sanz, J.L. and Köchling, T. (2007) Molecular biology techniques used in wastewater treatment: An overview. Process Biochem. 42, 119–133.

    Article  CAS  Google Scholar 

  60. Konuma, S., Satoh, H., Mino, T. and Matsuo, T. (2001) Comparison of enumeration methods for ammonia-oxidizing bacteria. Water Sci. Technol. 43, 1, 107–114.

    CAS  Google Scholar 

  61. Aoi, Y. (2002) In situ identification of microorganisms in biofilm communities. J. Biosci. Bioeng. 94, 6, 552–556.

    CAS  Google Scholar 

  62. Mobarry, B.K., Wagner, M., Urbain, V., Rittmann, B.E. and Stahl, D.A. (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62, 6, 2156–2162.

    CAS  Google Scholar 

  63. Takai, T., Niioka, H., Gao, Y., Matsumura, M., Inamori,Y. and Hirata, A. (1997) Development of rapid detection and quantification methods for nitrifying bacteria using monoclonal antibodies. J. Jap. Soc. Wat. Environ. 20, 5, 318–323.

    Article  CAS  Google Scholar 

  64. Schramm, A., Beer, D., Wagner, M. and Amann, R. (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. a dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64, 9, 3480–3485.

    CAS  Google Scholar 

  65. Wagner, M., Amann, R., Lemmer, H. and Schleifer, K.H. (1993) Probing activated sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59, 5, 1520–1525.

    CAS  Google Scholar 

  66. Daims, H., Nielsen, P.H., Nielsen, J.L., Juretschko, S. and Wagner, M. (2000) Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Water Sci. Technol. 41, 4–5, 85–90.

    CAS  Google Scholar 

  67. Satoh, H., Okabe, S., Norimatsu, N. and Watanabe, Y. (2000) Significance of substrate C/N ratio on structure and activity of nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Water Sci. Technol. 41, 4–5, 317–321.

    CAS  Google Scholar 

  68. Okabe, S. and Watanabe, Y. (2000) Structure and function of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Water Sci. Technol. 42, 12, 21–32.

    CAS  Google Scholar 

  69. Daims, H., Purkhold, U., Bjerrum, L., Arnold, E., Wilderer, P.A. and Wagner, M. (2001) Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. Water Sci. Technol. 43, 3, 9–18.

    CAS  Google Scholar 

  70. Okabe, S., Satoh, H. and Watanabe, Y. (1999) In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65, 3182–3191.

    CAS  Google Scholar 

  71. Persson, F., Wik, T., Sö rensson, F. and Hermansson, M. (2002) Distribution and activity of ammonia oxidizing bacteria in a large full-scale trickling filter. Water Res. 36, 1439–1448.

    Article  CAS  Google Scholar 

  72. Ballinger, S.J., Head, I.M., Curtis, T.P. and Godley, A.R. (2002) The effect of C/N ratio on ammonia oxidizing bacteria community structure in a laboratory nitrification-denitrification reactor. Water Sci. Technol. 46, 1–2, 543–550.

    CAS  Google Scholar 

  73. Simm, R.A., Ramey, W.D. and Mavinic, D.S. (2005) Nitrifier population dynamics in a bench-scale conventional activated sludge reactor following an induced perturbation. J. Environ. Eng. Sci. 4, 385–397.

    Article  CAS  Google Scholar 

  74. Michotey, V., Mejean, V. and Bonin, P. (2000), Comparison of methods for quantification of cytochrome cd1-denitrifying bacteria in environmental marine samples. Appl. Environ. Microbiol. 66, 1564–1571.

    Article  CAS  Google Scholar 

  75. Zumft, W.G. (1997) Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616.

    CAS  Google Scholar 

  76. Liu, X., Tiquia, S.M., Holguin, G., Wu, L., Nold, S.C., Devol, A.H., Luo, K., Palumbo, A.V., Tiedje, J.M. and Zhou, J. (2003) Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the Pacific Coast of Mexico. Appl. Environ. Microbiol. 69, 3549–3560.

    Article  CAS  Google Scholar 

  77. Araki, N., Tsukamoto, Y., Nagano, A., Yamaguchi, T. and Harada, H. (2006) Real-time PCR quantification of nitrite reductase (nirS) genes in a nitrogen removing fluidized bed reactor. Water Sci. Technol. 53, 6, 59–65.

    Article  CAS  Google Scholar 

  78. Liu, Y., Zhang, T., Herbert, H.P. and Fang, H.H.P. (2005) Microbial community analysis and performance of a phosphate-removing activated sludge. Bioresource Technol. 96, 1205–1214.

    Article  CAS  Google Scholar 

  79. Seviour, R.J., Mino, T. and Onuki, M. (2003) The microbiology of biological phosphorous removal in activated sludge systems. FEMS Microbiol. Rev. 27, 99–127.

    Article  CAS  Google Scholar 

  80. Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D. and Schleifer, K.H. (1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbiol. 60, 3, 792–800.

    CAS  Google Scholar 

  81. Kawaharasaki, M., Takahiro, K., Tanaka, H. and Nakamura, K. (1998) Development and application of 16S rRNA-targeted oligonucleotide probe for detection of phosphate-accumulating bacterium Microlunatus phosphorus in the enhanced biological phosphorus removal process. Water Sci. Technol. 37, 4–5, 481–484.

    CAS  Google Scholar 

  82. Crocetti, G.R., Hugenholtz, P., Bond, P.L., Schuler, A., Keller, J., Jenkins, D. and Blackall, L.L. (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol. 66, 3, 1175–1182.

    Article  CAS  Google Scholar 

  83. Wong, M.T., Minob, T., Seviourc, R.J., Onukib, M. and Liu, W.T. (2005) In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res. 39, 2901–2914.

    Article  CAS  Google Scholar 

  84. Eschenhagen, M., Schuppler, M. and Röske, I. (2003) Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Res. 37, 3224–3232.

    Article  CAS  Google Scholar 

  85. Ahn, J., Daidou, T., Tsuneda, S. and Hirata, A. (2002) Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay. Water Res. 36, 403–412.

    Article  CAS  Google Scholar 

  86. Palmer, S., Wiegand, A.P., Maldarelli, F., Bazmi, H., Mican, J.M., Polis, M., Dewar, R.L. and Planta, A. (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J. Clin. Microbiol. 41, 4531–4536.

    Article  CAS  Google Scholar 

  87. Wong, M.L. and Medrano, J.F. (2005) Real-time for mRNA quantitation. BioTechniques. 39, 1, 1–10.

    Article  Google Scholar 

  88. Wéry, N., Lhoutellier, C., Ducray, F., Delgenés, J.P. and Godon, J.J. (2008) Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Res. 42, 1–2, 53–62.

    Article  CAS  Google Scholar 

  89. Volkmann, H., Schwartz, T., Bischoff, P., Kirchen, S. and Obst, U. (2004) Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J. Microbiol. Meth. 56, 277–286.

    Article  CAS  Google Scholar 

  90. Limpiyakorn, T., Kurisu, F. and Yagi, O. (2006) Development and application of real-time PCR for quantification of specific ammonia-oxidizing bacteria in activated sludge of sewage treatment plants. Appl. Genet. Mol. Biotechnol. 7, 1004–1013.

    Article  CAS  Google Scholar 

  91. Kaetzke, A., Jentzisch, D. and Eschrich, K. (2005) Quantification of Microthrix parvicella in activated sludge bacterial communities by real-time PCR. Lett. Appl. Microbiol. 40, 207–211.

    Article  CAS  Google Scholar 

  92. Henegariu, O., Heerema, N.A., Dlouhy, S.R., Vance, G.H. and Vogt, P.H. (1997) Multiplex PCR: critical parameters and step-by-step protocol. BioTechniques. 23, 3, 504–511

    CAS  Google Scholar 

  93. Geets, J., de Cooman, M., Wittebolle, L., Heylen, K., Vanparys, B., de Vos, P., Verstraete, W. and Boon, N. (2007) Real-time PCR assay fort he simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Appl. Microbiol. Biotechnol. 75, 211–221.

    Article  CAS  Google Scholar 

  94. Hill, S.J., Keller, J. and Blackall, L.L. (2003) Microbial quantification in activated sludge: the hits and misses. Water Sci. Technol. 48, 3, 121–126.

    Google Scholar 

  95. Manser, R., Muche, K., Gujer, W. and Siegrist, H. (2005) A rapid method to quantify nitrifiers in activated sludge. Water Res. 39, 1585–1593.

    Article  CAS  Google Scholar 

  96. Gieseke, A., Arnz, P., Amann, R. and Schramm, A. (2002) Simultaneous P and N removal in a sequencing batch biofilm reactor: insights from reactor- and microscale investigations. Water Res. 36, 501–509.

    Article  CAS  Google Scholar 

  97. Jang, A., Okabe, S., Watanabe, Y., Kim, I.S. and Bishop, P.L. (2005) Measurement of growth rate of ammonia oxidizing bacteria in partially submerged rotating biological contactor by fluorescent in situ hybridization (FISH). J. Environ. Eng. Sci. 4, 413–420.

    Article  CAS  Google Scholar 

  98. Koch, G., Egli, K., van der Meer, J.R. and Siegrist, H. (2000) Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor. Water Sci. Technol. 41, 4–5, 191–198.

    CAS  Google Scholar 

  99. Jang, A., Yoon, Y.H., Kim, I.S., Kim, K.S. and Bishop, P.L. (2003) Characterization and evaluation of aerobic granules in sequencing batch reactor. J. Biotechnol. 105, 71–82.

    Article  CAS  Google Scholar 

  100. Alifano, P., Bruni, C.B. and Carlomagno, M.S. (1994) Control of mRNA processing and decay in prokaryotes. Genetica. 94, 157–172.

    Article  CAS  Google Scholar 

  101. Milner, M.G., Curtis, T.P. and Davenport, R.J. (2008) Presence and activity of ammonia-oxidising bacteria detected amongst the overall bacterial diversity along a physio-chemical gradient of wastewater treatment plant. Water Res. 42, 2863–2872.

    Article  CAS  Google Scholar 

  102. Selvaratnam, S., Schoedel, B.A., McFarland, B.L. and Kulpa, C.F. (1995) Application of reverse transcriptase PCR for monitoring expression of catabolic dmpN gene in a phenol-degrading sequencing batch reactor. Appl. Environ. Microbiol. 61, 11, 3981–3985.

    CAS  Google Scholar 

  103. Aoi, Y., Shiramasa, Y., Masaki, Y., Tsuneda, S., Hirata, A., Kitayama, A. and Nagamune, T. (2004) Expression of amoA mRNA in wastewater treatment processes examined by competitive RT-PCR. J. Biotechnol. 111, 2, 111–120.

    Article  CAS  Google Scholar 

  104. Cydzik-Kwiatkowska, A., Ciesielski, S. and Wojnowska-Baryła, I. (2007) Bacterial amoA and 16S rDNA genes expression in activated sludge during SBR cycle. Pol. J. Nat. Sci. 22, 246–255.

    Article  Google Scholar 

  105. Hartig, E. and Zumft, W.G. (1999) Kinetics of nirS expression (cytochrome cd 1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system. J. Bacteriol. 181, 161–166.

    CAS  Google Scholar 

  106. Amann, R.I., Ludwig, W. and Schleifer, K.H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 1, 143–169.

    CAS  Google Scholar 

  107. Witzig, R., Manz, W., Rosenberger, S., Krüger, U., Kraume, M. and Szewzyk, U. (2002) Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res. 36, 394–402.

    Article  CAS  Google Scholar 

  108. Briones, A. and Raskin, L. (2003) Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr. Opin. Biotech. 14, 270–276.

    Article  CAS  Google Scholar 

  109. LaPara, T.M., Nakatsu, C.H., Pantea, L.M. and Alleman, J.E. (2002) Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res. 36, 638–646.

    Article  CAS  Google Scholar 

  110. Fernandez, A., Huang, S., Seston, S., Xing, J., Hickey, R.F., Criddle, C. and Tiedje, J. (1999) How stable is stable? Function versus community stability. Appl. Environ. Microbiol. 65, 3697–3704.

    CAS  Google Scholar 

  111. Zieliński, M., Ciesielski, S., Cydzik-Kwiatkowska, A., Turek, J. and Dębowski, M. (2007) Influence of microbial radiation on bacterial community structure in biofilm. Process Biochem. 42, 1250–1253.

    Article  CAS  Google Scholar 

  112. Cydzik-Kwiatkowska, A. (2006) Examination of autotrophic nitrification in activated sludge with the use of PCR technique. Doctoral thesis (in Polish).

    Google Scholar 

  113. Rowan, A.K., Snape, J.R., Fearnside, D., Barer, M.R., Curtis, T.P. and Head, I.M. (2003) Composition and diversity of ammonia-oxidizing bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol. 43, 195–206.

    Article  CAS  Google Scholar 

  114. Dolan, J.F., O’ Neill, M.J. and Horan, N.J. (1990) The options available for ammonia removal at Davyhulme sewage-treatment works. J. Inst Water Environ. Manage. 4, 457–468.

    Article  CAS  Google Scholar 

  115. LaPara, T.M., Nakatsu, C.H., Pantea, L. and Alleman, J.E. (2000) Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl. Environ. Microbiol. 66, 9, 3951–3959.

    Article  CAS  Google Scholar 

  116. Xia, S., Li, J. and Wang, R. (2008) Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor. Ecol. Eng. 32, 256–262.

    Article  Google Scholar 

  117. Stackebrandt, E. and Goebel, B.M. (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.

    Article  CAS  Google Scholar 

  118. van Elsas, J.D., Duarte, G.F., Rosado, A.S. and Smalla, K. (1998) Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J. Microbiol. Meth. 32, 133–154.

    Article  Google Scholar 

  119. Selvaratnam, S., Schoedel, B.A., McFarland, B.L. and Kulpa, C.F. (1997) Application of the polymerase chain reaction (PCR) and reverse transcriptase / PCR for determining the fate of phenol-degrading Pseudomonas putida ATCC 11172 in a bioaugmented sequencing batch reactor. Appl. Microbiol. Biotechnol. 47, 236–240.

    Article  CAS  Google Scholar 

  120. Lee, J.Y., Jung, K.H., Choi, S.H. and Kim, H.S. (1995) Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralisation of a benzene, toluene and p-xylene mixture. Appl. Environ. Microbiol. 61, 2211–2217.

    CAS  Google Scholar 

  121. van der Gast, C.J., Whiteley, A.S. and Thompson, I.P. (2004) Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid. Environ. Microbiol. 6, 254–263.

    Article  Google Scholar 

  122. Boon, N., Goris, J., de Vos, P., Verstraete, W. and Top, E.M. (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosterone strain I2gfp. Appl. Environ. Microbiol. 66, 2906–2913.

    Article  CAS  Google Scholar 

  123. Thompson, I.P., van der Gast, C.J., Ciric, L. and Singer, A.C. (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ. Microbiol. 7, 909–915.

    Article  CAS  Google Scholar 

  124. Naeem, S. and Li, S.B. (1997) Biodiversity enhances ecosystem reliability. Nature. 390, 507–509.

    Article  CAS  Google Scholar 

  125. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D. and Wardle, D.A. (2001) Biodiversity and ecosystem functioning. Microbiol. 68, 326–334.

    Google Scholar 

  126. Ellis, R.J., Thompson, I.P. and Bailey, M.J. (1999) Temporal fluctuations in the Pseudomonas population associated with sugar beet leaves. FEMS Microbiol. Ecol. 28, 345–356.

    Article  CAS  Google Scholar 

  127. Zhou, J.Z., Xia, B.C., Treves, D.S., Wu, L.Y., Marsh, T.L., O’ Neill, R.V., Palumbo, A.V. and Tiedje, J.M. (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. 68, 326–334.

    Article  CAS  Google Scholar 

  128. Qu, Y., Zhou, J., Wang, J., Fu, X. and Xing, L. (2005) Microbial community dynamics in bioaugmented sequencing batch reactors for bromoamine acid removal. FEMS Microbiol. Lett. 246, 143–149.

    Article  CAS  Google Scholar 

  129. Fouratt, M.A., Rhodes, J.S., Smithers, C.M., Love, N.G. and Stevens, A.M. (2003) Application of temperature gradient gel electrophoresis to the characterization of a nitrifying bioaugmentation product. FEMS Microbiol. Ecol. 43, 277–286.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Wojnowska-Baryła, I., Cydzik-Kwiatkowska, A., Zielińska, M. (2010). The Application of Molecular Techniques to the Study of Wastewater Treatment Systems. In: Cummings, S. (eds) Bioremediation. Methods in Molecular Biology, vol 599. Humana Press. https://doi.org/10.1007/978-1-60761-439-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-439-5_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-440-1

  • Online ISBN: 978-1-60761-439-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics