Skip to main content

Generation of Stable Th1/CTL-, Th2-, and Th17-Inducing Human Dendritic Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 595))

Abstract

Dendritic cells (DC) are the most potent inducers and regulators of immune responses, responsible for communication within immune system. The ability of DC to act both as the inducers of immune responses and as regulatory/suppressive cells led to the interest in their immunotherapeutic use in different disease types, ranging from cancer to autoimmunity, and as a tool to prevent the rejection of transplanted tissues and organs. Over the last years, several groups including ours have demonstrated the feasibility of obtaining monocyte-derived DC with different functions, by modulating the conditions and the duration of DC maturation. The current chapter provides a detailed protocol of generating type-1-, type-2-, and type-17-polarized DC for testing the cytokine-producing abilities of these cells and their effectiveness in inducing Th1, Th2, and Th17 responses of CD4+ T cells and CTL responses of naïve and memory CD8+ T cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kapsenberg, M. L. (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3:984–993.

    Article  CAS  PubMed  Google Scholar 

  2. Lanzavecchia, A., and Sallusto, F. (2001) Regulation of T cell immunity by dendritic cells. Cell 106:263–266.

    Article  CAS  PubMed  Google Scholar 

  3. Palucka, K., and Banchereau, J. (2002) How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr Opin Immunol 14:420–431.

    Article  CAS  PubMed  Google Scholar 

  4. Banchereau, J., and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392:245–252.

    Article  CAS  PubMed  Google Scholar 

  5. Moser, M., and Murphy, K. M. (2000) Dendritic cell regulation of TH1-TH2 development. Nat Immunol 1:199–205.

    Article  CAS  PubMed  Google Scholar 

  6. Pulendran, B., Palucka, K., and Banchereau, J. (2001) Sensing pathogens and tuning immune responses. Science 293:253–256.

    Article  CAS  PubMed  Google Scholar 

  7. Kalinski, P., and Moser, M. (2005) Consensual immunity: success-driven development of T-helper-1 and T-helper-2 responses. Nat Rev Immunol 5:251–260.

    Article  CAS  PubMed  Google Scholar 

  8. Kalinski, P., Hilkens, C. M., Wierenga, E. A., and Kapsenberg, M. L. (1999) T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20:561–567.

    Article  CAS  PubMed  Google Scholar 

  9. Conroy, H., Marshall, N. A., and Mills, K. H. (2008) TLR ligand suppression or enhancement of Treg cells? A double-edged sword in immunity to tumours. Oncogene 27:168–180.

    Article  CAS  PubMed  Google Scholar 

  10. Larsson, M., Beignon, A. S., and Bhardwaj, N. (2004) DC-virus interplay: a double edged sword. Semin Immunol 16:147–161.

    Article  CAS  PubMed  Google Scholar 

  11. Bhardwaj, N. (1997) Interactions of viruses with dendritic cells: a double-edged sword. J Exp Med 186:795–799.

    Article  CAS  PubMed  Google Scholar 

  12. Pinzon-Charry, A., Maxwell, T., and Lopez, J. A. (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83:451–461.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, L., and Carbone, D. P. (2004) Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res 92:13–27.

    Article  CAS  PubMed  Google Scholar 

  14. Offringa, R., de Jong, A., Toes, R. E., van der Burg, S. H., and Melief, C. J. (2003) Interplay between human papillomaviruses and dendritic cells. Curr Top Microbiol Immunol 276:215–240.

    CAS  PubMed  Google Scholar 

  15. Ohm, J. E., and Carbone, D. P. (2001) VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 23:263–272.

    Article  CAS  PubMed  Google Scholar 

  16. Lanzavecchia, A., and Sallusto, F. (2000) Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290:92–97.

    Article  CAS  PubMed  Google Scholar 

  17. Lanzavecchia, A., and Sallusto, F. (2001) The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr Opin Immunol 13:291–298.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Y. J., Kanzler, H., Soumelis, V., and Gilliet, M. (2001) Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol 2:585–589.

    Article  CAS  PubMed  Google Scholar 

  19. Pulendran, B. (2004) Modulating TH1/TH2 responses with microbes, dendritic cells, and pathogen recognition receptors. Immunol Res 29:187–196.

    Article  CAS  PubMed  Google Scholar 

  20. Grohmann, U., Fallarino, F., and Puccetti, P. (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24:242–248.

    Article  CAS  PubMed  Google Scholar 

  21. Jonuleit, H., Adema, G., and Schmitt, E. (2003) Immune regulation by regulatory T cells: implications for transplantation. Transpl Immunol 11:267–276.

    Article  CAS  PubMed  Google Scholar 

  22. Jonuleit, H., Schmitt, E., Steinbrink, K., and Enk, A. H. (2001) Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol 22:394–400.

    Article  CAS  PubMed  Google Scholar 

  23. Sallusto, F., and Lanzavecchia, A. (1999) Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J Exp Med 189:611–614.

    Article  CAS  PubMed  Google Scholar 

  24. Steinman, R. M., Hawiger, D., and Nussenzweig, M. C. (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711.

    Article  CAS  PubMed  Google Scholar 

  25. Yamazaki, S., Inaba, K., Tarbell, K. V., and Steinman, R. M. (2006) Dendritic cells expand antigen-specific Foxp3+ CD25+ CD4+ regulatory T cells including suppressors of alloreactivity. Immunol Rev 212:314–329.

    Article  CAS  PubMed  Google Scholar 

  26. van Beelen, A. J., Zelinkova, Z., Taanman-Kueter, E. W., Muller, F. J., Hommes, D. W., Zaat, S. A., Kapsenberg, M. L., and de Jong, E. C. (2007) Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27:660–669.

    Article  PubMed  Google Scholar 

  27. van Beelen, A. J., Teunissen, M. B., Kapsenberg, M. L., and de Jong, E. C. (2007) Interleukin-17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol 7:374–381.

    Article  PubMed  Google Scholar 

  28. Veldhoen, M., Uyttenhove, C., van Snick, J., Helmby, H., Westendorf, A., Buer, J., Martin, B., Wilhelm, C., and Stockinger, B. (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346.

    Google Scholar 

  29. Veldhoen, M., Hirota, K., Westendorf, A. M., Buer, J., Dumoutier, L., Renauld, J. C., and Stockinger, B. (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109.

    Article  CAS  PubMed  Google Scholar 

  30. Stockinger, B., Veldhoen, M., and Martin, B. (2007) Th17 T cells: linking innate and adaptive immunity. Semin Immunol 19:353–361.

    Article  CAS  PubMed  Google Scholar 

  31. Stockinger, B., and Veldhoen, M. (2007) Differentiation and function of Th17 T cells. Curr Opin Immunol 19:281–286.

    Article  CAS  PubMed  Google Scholar 

  32. Veldhoen, M., Hocking, R. J., Flavell, R. A., and Stockinger, B. (2006) Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7:1151–1156.

    Article  CAS  PubMed  Google Scholar 

  33. Bettelli, E., Korn, T., Oukka, M., and Kuchroo, V. K. (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–1057.

    Article  CAS  PubMed  Google Scholar 

  34. Bettelli, E., Korn, T., and Kuchroo, V. K. (2007) Th17: the third member of the effector T cell trilogy. Curr Opin Immunol 19:652–657.

    Article  CAS  PubMed  Google Scholar 

  35. Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L., and Kuchroo, V. K. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238.

    Article  CAS  PubMed  Google Scholar 

  36. Weaver, C. T., and Murphy, K. M. (2007) T-cell subsets: the more the merrier. Curr Biol 17:R61–63.

    Article  CAS  PubMed  Google Scholar 

  37. Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M., and Murphy, K. M. (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688.

    Article  CAS  PubMed  Google Scholar 

  38. Mangan, P. R., Harrington, L. E., O’Quinn, D. B., Helms, W. S., Bullard, D. C., Elson, C. O., Hatton, R. D., Wahl, S. M., Schoeb, T. R., and Weaver, C. T. (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234.

    Article  CAS  PubMed  Google Scholar 

  39. Manel, N., Unutmaz, D., and Littman, D. R. (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9:641–649.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, L., Lopes, J. E., Chong, M. M., Ivanov, II, Min, R., Victora, G. D., Shen, Y., Du, J., Rubtsov, Y. P., Rudensky, A. Y., et al. (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240.

    Article  CAS  PubMed  Google Scholar 

  41. Nestle, F. O., Farkas, A., and Conrad, C. (2005) Dendritic-cell-based therapeutic vaccination against cancer. Curr Opin Immunol 17:163–169.

    Article  CAS  PubMed  Google Scholar 

  42. Banchereau, J., and Palucka, A. K. (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5:296–306.

    Article  CAS  PubMed  Google Scholar 

  43. Figdor, C. G., de Vries, I. J., Lesterhuis, W. J., and Melief, C. J. (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480.

    Article  CAS  PubMed  Google Scholar 

  44. Steinman, R. M., and Banchereau, J. (2007) Taking dendritic cells into medicine. Nature 449:419–426.

    Article  CAS  PubMed  Google Scholar 

  45. Schuler, G., Schuler-Thurner, B., and Steinman, R. M. (2003) The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15:138–147.

    Article  CAS  PubMed  Google Scholar 

  46. Steinman, R. M., and Pope, M. (2002) Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest 109:1519–1526.

    CAS  PubMed  Google Scholar 

  47. Fong, L., and Engleman, E. G. (2000) Dendritic cells in cancer immunotherapy. Annu Rev Immunol 18:245–273.

    Article  CAS  PubMed  Google Scholar 

  48. Engleman, E. G. (2003) Dendritic cell-based cancer immunotherapy. Semin Oncol 30:23–29.

    Article  CAS  PubMed  Google Scholar 

  49. Czerniecki, B. J., Cohen, P. A., Faries, M., Xu, S., Roros, J. G., and Bedrosian, I. (2001) Diverse functional activity of CD83+ monocyte-derived dendritic cells and the implications for cancer vaccines. Crit Rev Immunol 21:157–178.

    CAS  PubMed  Google Scholar 

  50. Lotze, M. T., Shurin, M., Davis, I., Amoscato, A., and Storkus, W. J. (1997) Dendritic cell based therapy of cancer. Adv Exp Med Biol 417:551–569.

    CAS  PubMed  Google Scholar 

  51. Kalinski, P., Hilkens, C. M., Snijders, A., Snijdewint, F. G., and Kapsenberg, M. L. (1997) IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 159:28–35.

    CAS  PubMed  Google Scholar 

  52. de Jong, E. C., Vieira, P. L., Kalinski, P., and Kapsenberg, M. L. (1999) Corticosteroids inhibit the production of inflammatory mediators in immature monocyte-derived DC and induce the development of tolerogenic DC3. J Leukoc Biol 66:201–204.

    PubMed  Google Scholar 

  53. Kalinski, P., Schuitemaker, J. H., Hilkens, C. M., and Kapsenberg, M. L. (1998) Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol 161:2804–2809.

    CAS  PubMed  Google Scholar 

  54. Kalinski, P., Schuitemaker, J. H., Hilkens, C. M., Wierenga, E. A., and Kapsenberg, M. L. (1999) Final maturation of dendritic cells is associated with impaired responsiveness to IFN-gamma and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J Immunol 162:3231–3236.

    CAS  PubMed  Google Scholar 

  55. de Jong, E. C., Vieira, P. L., Kalinski, P., Schuitemaker, J. H., Tanaka, Y., Wierenga, E. A., Yazdanbakhsh, M., and Kapsenberg, M. L. (2002) Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse Th cell-polarizing signals. J Immunol 168:1704–1709.

    PubMed  Google Scholar 

  56. Gagliardi, M. C., Sallusto, F., Marinaro, M., Langenkamp, A., Lanzavecchia, A., and De Magistris, M. T. (2000) Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. Eur J Immunol 30:2394–2403.

    Article  CAS  PubMed  Google Scholar 

  57. Vieira, P. L., de Jong, E. C., Wierenga, E. A., Kapsenberg, M. L., and Kalinski, P. (2000) Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J Immunol 164:4507–4512.

    CAS  PubMed  Google Scholar 

  58. Mailliard, R. B., Egawa, S., Cai, Q., Kalinska, A., Bykovskaya, S. N., Lotze, M. T., Kapsenberg, M. L., Storkus, W. J., and Kalinski, P. (2002) Complementary dendritic cell-activating function of CD8+ and CD4+ T cells: helper role of CD8+ T cells in the development of T helper type 1 responses. J Exp Med 195:473–483.

    Article  CAS  PubMed  Google Scholar 

  59. Mailliard, R. B., Son, Y. I., Redlinger, R., Coates, P. T., Giermasz, A., Morel, P. A., Storkus, W. J., and Kalinski, P. (2003) Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol 171:2366–2373.

    CAS  PubMed  Google Scholar 

  60. Mailliard, R. B., Wankowicz-Kalinska, A., Cai, Q., Wesa, A., Hilkens, C. M., Kapsenberg, M. L., Kirkwood, J. M., Storkus, W. J., and Kalinski, P. (2004) alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64:5934–5937.

    Article  CAS  PubMed  Google Scholar 

  61. Langenkamp, A., Messi, M., Lanzavecchia, A., and Sallusto, F. (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1:311–316.

    Article  CAS  PubMed  Google Scholar 

  62. Watchmaker, P., Urban, J., Berk, E., Nakamura, Y., Mailliard, R. B., Watkins, S. C., Van Ham, S. M., and Kalinski, P. (2008) Memory CD8+ T cells protect dendritic cells from CTL killing. J Immunol 180: 3857–3865.

    CAS  PubMed  Google Scholar 

  63. Wesa, A., Kalinski, P., Kirkwood, J. M., Tatsumi, T., and Storkus, W. J. (2007) Polarized type-1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1-type antimelanoma CD4+ T cell responses in vitro. J Immunother 30:75–82.

    Article  CAS  PubMed  Google Scholar 

  64. Lee, J. J., Foon, K. A., Mailliard, R. B., Muthuswamy, R., and Kalinski, P. (2008) Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J Leukoc Biol 84:319–325.

    Google Scholar 

  65. Jonuleit, H., Kuhn, U., Muller, G., Steinbrink, K., Paragnik, L., Schmitt, E., Knop, J., and Enk, A. H. (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135–3142.

    Article  CAS  PubMed  Google Scholar 

  66. Fraser, J. D. (1989) High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR. Nature 339:221–223.

    Article  CAS  PubMed  Google Scholar 

  67. Fraser, J. D. (1992) Superantigen data. Nature 360:423.

    Article  CAS  PubMed  Google Scholar 

  68. Kadowaki, N., and Liu, Y. J. (2002) Natural type I interferon-producing cells as a link between innate and adaptive immunity. Hum Immunol 63:1126–1132.

    Article  CAS  PubMed  Google Scholar 

  69. Kalinski, P., Hilkens, C. M., Snijders, A., Snijdewint, F. G., and Kapsenberg, M. L. (1997) Dendritic cells, obtained from peripheral blood precursors in the presence of PGE2, promote Th2 responses. Adv Exp Med Biol 417:363–367.

    CAS  PubMed  Google Scholar 

  70. Kalinski, P., Smits, H. H., Schuitemaker, J. H., Vieira, P. L., van Eijk, M., de Jong, E. C., Wierenga, E. A., and Kapsenberg, M. L. (2000) IL-4 is a mediator of IL-12p70 induction by human Th2 cells: reversal of polarized Th2 phenotype by dendritic cells. J Immunol 165:1877–1881.

    CAS  PubMed  Google Scholar 

  71. Kalinski, P., Vieira, P. L., Schuitemaker, J. H., de Jong, E. C., and Kapsenberg, M. L. (2001) Prostaglandin E(2) is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood 97:3466–3469.

    Article  CAS  PubMed  Google Scholar 

  72. Mailliard, R. B., Alber, S. M., Shen, H., Watkins, S. C., Kirkwood, J. M., Herberman, R. B., and Kalinski, P. (2005) IL-18-induced CD83+CCR7+ NK helper cells. J Exp Med 202:941–953.

    Article  CAS  PubMed  Google Scholar 

  73. Trepiakas, R., Pedersen, A. E., Met, O., Hansen, M. H., Berntsen, A., and Svane, I. M. (2008) Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients. Vaccine 26:2824–2832.

    Article  CAS  PubMed  Google Scholar 

  74. Zhou, L., Ivanov, II, Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D. E., Leonard, W. J., and Littman, D. R. (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974.

    Article  CAS  PubMed  Google Scholar 

  75. Ivanov, II, McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J., and Littman, D. R. (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133.

    Article  CAS  PubMed  Google Scholar 

  76. Muthuswamy, R., Urban, J., Lee, J. J., Reinhart, T. A., Bartlett, D., and Kalinski, P. (2008) Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res 68:5972–5978.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NCI grants CA95128, CA101944, and CA114931.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kalinski, P., Wieckowski, E., Muthuswamy, R., de Jong, E. (2010). Generation of Stable Th1/CTL-, Th2-, and Th17-Inducing Human Dendritic Cells. In: Naik, S. (eds) Dendritic Cell Protocols. Methods in Molecular Biology, vol 595. Humana Press. https://doi.org/10.1007/978-1-60761-421-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-421-0_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-420-3

  • Online ISBN: 978-1-60761-421-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics