Skip to main content

Reversing Agents for ATP-Binding Cassette Drug Transporters

  • Protocol
  • First Online:
Multi-Drug Resistance in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 596))

Abstract

The multidrug resistance (MDR) phenotype exhibited by cancer cells is believed to be the major barriers to successful chemotherapy in cancer patients. The major form of MDR phenotype is contributed by a group of ATP-binding cassette (ABC) drug transporters which include P-glycoprotein, multidrug resistance-associated protein 1, and breast cancer resistance protein. There has been intense search for compounds which can act to reverse MDR phenotype in cultured cells, in animal models, and ultimately in patients. The ongoing search for MDR modulators, compounds that act directly on the ABC transporter proteins to block their activity, has led to three generations of drugs. Some of the third-generation MDR modulators have demonstrated encouraging results compared to earlier generation MDR modulators in clinical trials. These modulators are less toxic and they do not affect the pharmacokinetics of anti-cancer drugs. Significant numbers of natural products have also been identified for their effectiveness in reversing MDR in a manner similar to the MDR modulators. Other MDR reversing strategies that have been studied quite extensively are also reviewed and discussed in this chapter. These include strategies aimed at destroying mRNAs for ABC drug transporters, approaches in inhibiting transcription of ABC transporter genes, and blocking of ABC transporter activity using antibodies. This review summarizes the development of reversing agents for ABC drug transporters up to the end of 2008, and provides an optimistic view of what we have achieved and where we could go from here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cole SPC, Tannock IF (2005) Drug resistance. In: Tannock IF, Hill RP, Bristow RG, Harrington L (eds) The basic science of oncology. McGraw-Hill, New York, pp 376–399

    Google Scholar 

  2. Goldstein LJ, Galski H, Fojo A et al (1989) Expression of multidrug resistance gene in human cancers. J Natl Cancer Inst 81:116–124

    CAS  PubMed  Google Scholar 

  3. Chan HS, Haddad G, Thorner PS et al (1991) P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med 325:1608–1614

    CAS  PubMed  Google Scholar 

  4. Lee CH (2004) Reversing agents for ATP-binding cassette (ABC) transporters: application in modulating multidrug resistance (MDR). Curr Med Chem Anticancer Agents 4:43–52

    CAS  PubMed  Google Scholar 

  5. Wu C-P, Calcagno AM, Ambudkar SV (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr Mol Pharmacol 1:93–105

    CAS  PubMed  Google Scholar 

  6. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1981) Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41:1967–1972

    CAS  PubMed  Google Scholar 

  7. Tan B, Piwnica-Worms D, Ratner L (2000) Multidrug resistance transporters and modulation. Curr Opin Oncol 12:450–458

    CAS  PubMed  Google Scholar 

  8. Twentyman PR, Fox NE, White DJ (1987) Cyclosporine A and its analogues as modifiers as adriamycin and vincristine resistance in a multidrug resistant human lung cancer cell line. Br J Cancer 56:55–57

    CAS  PubMed  Google Scholar 

  9. Thomas H, Coley HM (2003) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10:159–165

    PubMed  Google Scholar 

  10. Twentyman PR, Bieehen NM (1991) Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporine. Eur J Cancer 27:1639–1642

    CAS  PubMed  Google Scholar 

  11. te Borkhorst PA, van Kapel J, Schoester M, Sonneveld P (1992) Reversal of typical multidrug resistance by cyclosporin and its non-immunosuppressive analogue SDZ PSC 833 in Chinese hamster ovary cells expressing the mdr1 phenotype. Cancer Chemother Pharmacol 30:238–242

    Google Scholar 

  12. Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–283

    CAS  PubMed  Google Scholar 

  13. Bates S, Kang M, Meadows B et al (2001) A Phase I study of infusional vinblastine in combination with the P-glycoprotein antagonist PSC 833 (valspodar). Cancer 92:1577–1590

    CAS  PubMed  Google Scholar 

  14. Wandel C, Kim RB, Kajiji S et al (1999) P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res 59:3944–3948

    CAS  PubMed  Google Scholar 

  15. Friedenberg WR, Rue M, Blood EA et al (2006) Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): a trial of the Eastern Cooperative Oncology Group. Cancer 106:830–838

    PubMed  Google Scholar 

  16. Dantzig AH, Law KL, Starling JJ (2001) Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr Med Chem 8:39–50

    CAS  PubMed  Google Scholar 

  17. Gerrard G, Payne E, Baker RJ et al (2004) Clinical effects and P-glycoprotein inhibition in patients with acute myeloid leukemia treated with zosuquidar trihydrochloride, daunorubucin and cytarabine. Haematologica 89:782–790

    CAS  PubMed  Google Scholar 

  18. Morschhauser F, Zinzani PL, Burgess M et al (2007) Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar. 3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin’s lymphoma. Leuk Lymphoma 48:708–715

    CAS  PubMed  Google Scholar 

  19. Allen JD, Brinkhuis R, Wijnholds J, Schinkel A (1999) The mouse Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res 59:4237–4241

    CAS  PubMed  Google Scholar 

  20. Kuppens IELM, Witteveen EO, Jewell RC et al (2007) A Phase I, randomaized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin Cancer Res 13:3276–3285

    CAS  PubMed  Google Scholar 

  21. Shukla S, Wu C-P, Ambudkar SV (2008) Development of inhibitors of ATP-binding cassette drug transporters – present status and challenges. Expert Opin Drug Metab Toxicol 4:205–223

    CAS  PubMed  Google Scholar 

  22. Oldham RK, Reid WK, Preisler HD, Barnett D (1998) A Phase I and pharmacokinetic study of CBT-1 as a multidrug resistance modulator in the treatment of patients with advanced cancer. Cancer Biother Radiopharm 13:71–80

    CAS  PubMed  Google Scholar 

  23. Oldham RK, Reid WK, Barnett D (2000) Phase I study of CBT-1 and Taxol in patients with Taxol resistant cancers. Cancer Biother Radiopharm 15:153–159

    CAS  PubMed  Google Scholar 

  24. Mistry P, Stewart AJ, Dangerfield W et al (2001) In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res 61:749–758

    CAS  PubMed  Google Scholar 

  25. Abraham J, Edgerly M, Wilson R et al (2001) A Phase I study of the novel P-glycoprotein (Pgp) antagonist, XR9576 in combination with vinorelbine. Proc Am Soc Clin Oncol 20:287 Abstract

    Google Scholar 

  26. Ferry D, Price L, Atsmon J (2001) A phase IIa pharmacokinetic and pharmacodynamic study of the P-glycoprotein inhibitor, XR9576 in patients treated with doxorubicin chemotherapy. Proc Am Assoc Cancer Res 42:950 Abstract 5106

    Google Scholar 

  27. Stewart A, Steiner J, Mellows G et al (2000) Phase I trial of XR9576 in healthy volunteers demonstrates modulation of P-glycoprotein in CD56+ lymphocytes after oral and intravenous administration. Clin Cancer Res 6:4186–4191

    CAS  PubMed  Google Scholar 

  28. Nobili S, Landini I, Giglioni B, Mini E (2006) Pharmacological strategies for overcoming multidrug resistance. Curr Drug Targets 7:861–879

    CAS  PubMed  Google Scholar 

  29. Oldham R (2007) Safety and efficacy study of CBT-1 and paclitaxel with carboplatin in patients with advanced inoperable non-small cell lung cancer. Available at http://www.clinicaltrial.gov 2007

  30. Reyno L, Seymour L, Tu D et al (2004) Phase III study of N, N-diethyl-2-[4-(phenylmethyl)phenoxylethanamine (BMS-217380–01) combined with doxorubicin versus doxorubicin alone in metastatic/recurrent breast cancer: National Cancer Institute of Canada clinical trials group study MA.19. J Clin Oncol 22:269–276

    CAS  PubMed  Google Scholar 

  31. Saeki T, Nomizu T, Toi M et al (2007) Dofequidar fumrate (MS-209) in combination with cyclophosphamide, doxorubicin, and fluorouracil for patients with advanced or recurrent breast cancer. J Clin Oncol 25:411–417

    CAS  PubMed  Google Scholar 

  32. Mistry PP, Folkes AA (2002) ONT-093 (Ontogen). Curr Opin Investig Drugs 3:1666–1671

    CAS  PubMed  Google Scholar 

  33. Berruti A, Terzolo M, Sperone P et al (2005) Etoposide, doxorubicin and cisplatin plus mitatane in the treatment of advanced adrenocortical carcinomas: a large prospective Phase II trial. Endocr Relat Cancer 12:657–666

    CAS  PubMed  Google Scholar 

  34. van Zuylen L, Sparreboom A, van Der Gaast A et al (2000) The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin Cancer Res 6:1365–1371

    PubMed  Google Scholar 

  35. Fox E, Bates SE (2007) Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther 7:447–459

    CAS  PubMed  Google Scholar 

  36. Rowinsky EK, Smith L, Wang YM et al (1998) Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP. J Clin Oncol 16:2964–2976

    CAS  PubMed  Google Scholar 

  37. Agrawal M, Abraham J, Balis FM et al (2003) Increased 99mTc-sestambi accumulation in normal liver and drug-resistant tumors after the administration of the glycoprotein inhibitor, XR9576. Clin Cancer Res 9:650–656

    CAS  PubMed  Google Scholar 

  38. O’Connor R, O’Leary M, Ballot J et al (2007) A Phase I clinical and pharmacokinetic study of the multi-drug resistance protein-1 (MRP-1) inhibitor sulindac, in combination with epirubicin in patients with cancer. Cancer Chemother Pharmacol 59:79–87

    PubMed  Google Scholar 

  39. Tranchand B, Catimel G, Lucas C et al (1998) Phase I clinical and pharmacokinetic study of S9788, a new multidrug resistance reversal agent given alone and in combination with doxorubicin to patients with advanced solid tumors. Cancer Chemother Pharmacol 41:281–291

    CAS  PubMed  Google Scholar 

  40. Limtrakul P (2007) Curcumin as chemosensitizer. Adv Exp Med Biol 595:269–300

    PubMed  Google Scholar 

  41. Jin J, Wang FP, Wei H, Liu G (2005) Reversal of multidrug resistance of cancer through inhibition of P-glycoprotein by 5-bromotetrandrine. Cancer Chemother Pharmacol 55:179–188

    CAS  PubMed  Google Scholar 

  42. Weiss J, Sauer A, Frank A, Unger M (2005) Extracts and kavalactones of Piper methysticum G. Forst (kava-kava) inhibit P-glycoprotein in vitro. Drug Metab Dispos 33:1580–1583

    CAS  PubMed  Google Scholar 

  43. Chearwae W, Wu C-P, Chu H et al (2006) Curcuminoids purified from tumeric powder modulate the function of human multidrug resistance protein 1 (ABCC1). Cancer Chemother Pharmacol 57:376–388

    CAS  PubMed  Google Scholar 

  44. Wu C-P, Calcagno AM, Hladky SB, Ambudkar SV, Barrand MA (2005) Modulatory effects of plant phenols on human multidrug-resistance proteins 1, 4 and 5 (ABCC1, 4 and 5). FEBS J 272:4725–4740

    CAS  PubMed  Google Scholar 

  45. van Zanden JJ, De Mul A, Wortelboer HM et al (2005) Reversal of in vitro cellular MRP1 and MRP2 mediated vincristine resistance by the flavonoid myricetin. Biochem Pharmacol 69:1657–1665

    PubMed  Google Scholar 

  46. Ahmed-Belkacem A, Pozza A, Munoz-Martinez F et al (2005) Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res 65:4852–4860

    CAS  PubMed  Google Scholar 

  47. Boumendjel A, Nicolle E, Moraux T et al (2005) Piperazinobenzopyranones and phenalklyaminobenzopyranones: potent inhibitors of breast cancer resistance protein (ABCG2). J Med Chem 48:7275–7281

    CAS  PubMed  Google Scholar 

  48. Morita H, Koyama K, Sugimoto Y, Kobayashi J (2005) Antimitotic activity and reversal of breast cancer resistance protein-mediated drug resistance by stilbenoids from Bletilla striata. Bioorg Med Chem Lett 15:1051–1054

    CAS  PubMed  Google Scholar 

  49. Raad I, Terreux R, Richomme P et al (2006) Structure-activity relationship of natural and synthetic coumarins inhibiting the mutidrug transporter P-glycoprotein. Bioorg Med Chem 14:6979–6987

    CAS  PubMed  Google Scholar 

  50. Molnar J, Gyemant N, Tanaka M et al (2006) Inhibition of multidrug resistance of cancer cells by natural diterpenes, triterpenes and carotenoids. Curr Pharm Des 12:287–311

    CAS  PubMed  Google Scholar 

  51. Chearwae W, Shukla S, Limtrakul P, Ambudkar SV (2006) Modulation of the function of the multidrug resistance-linked ATP-binding cassette transporter ABCG2 by the cancer chemopreventive agent curcumin. Mol Cancer Ther 5:1995–2006

    CAS  PubMed  Google Scholar 

  52. Henrich CJ, Bokesch HR, Dean MB et al (2006) A high-throughput cell-based assay for inhibitors of ABCG2 activity. J Biomol Screen 11:176–183

    CAS  PubMed  Google Scholar 

  53. Jin J, Shahi S, Kang HK, Van Veen HW, Fan TP (2006) Metabolism of ginsenosides as novel BCRP inhibitors. Biochem Biophys Res Commun 345:1308–1314

    CAS  PubMed  Google Scholar 

  54. Limtrakul P, Siwanon S, Yodkeeree S, Duangrat C (2007) Effect of Stemona curtisii root extract on P-glycoprotein and MRP-1 function in multidrug-resistant cancer cells. Phytomedicine 14:381–389

    CAS  PubMed  Google Scholar 

  55. Yoo HH, Lee M, Lee MW et al (2007) Effects of Schisandra lignase on P-glycoprotein-mediated drug efflux in human intestinal Caco-2. Planta Med 73:444–450

    CAS  PubMed  Google Scholar 

  56. Patanasethanont D, Nagai J, Yumoto R et al (2007) Effects of Kaempferia parviflora extracts and their flavone constituents on P-glycoprotein function. J Pharm Sci 96:223–233

    CAS  PubMed  Google Scholar 

  57. Fong W-F, Wan C-K, Zhu G-Y et al (2007) Schisandrol A from Schisandra chinensis reverses P-glycoprotein-mediated multidrug resistance by affecting Pgp-substrate complexes. Planta Med 73:212–220

    CAS  PubMed  Google Scholar 

  58. Yu S-T, Chen T-M, Tseng S-Y, Chen Y-H (2007) Tryotanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells. Biochem Biophys Res Commun 358:79–84

    CAS  PubMed  Google Scholar 

  59. Collnot EM, Baldes C, Wempe MF et al (2007) Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity. Mol Pharmacol 4:465–474

    CAS  Google Scholar 

  60. Gao JM, Wu WJ, Zhang JW, Konishi Y (2007) The dihydro-β-agarofuran sesquiterpenoids. Nat Prod Rep 24:1153–1189

    CAS  PubMed  Google Scholar 

  61. Katayama K, Masuyama K, Yoshioka S et al (2007) Flavonoids inhibit breast cancer resistance protein-mediated drug resistance: transporter specificity and structure-activity relationship. Cancer Chemother Pharmacol 60:789–797

    CAS  PubMed  Google Scholar 

  62. Ahmed-Belkacem A, Macalou S, Borrelli F et al (2007) Nonprenylated totenoids, a new class of potent breast cancer resistance protein inhibitors. J Med Chem 50: 1933–1938

    CAS  PubMed  Google Scholar 

  63. Limtrakul P, Chearwae W, Shukla S, Phisalphong C, Ambudkar SV (2007) Modulation of function of three ABC transporters, P-glycoprotein (ABCB1), mitoxanthrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol Cell Biochem 296:85–95

    CAS  PubMed  Google Scholar 

  64. Romiti N, Pellati F, Nieri P et al (2008) P-glycoprotein inhibitory activity of lipophilic constituents of Echinacea pallida roots in a human proximal tubular cell lines. Planta Med 74:264–266

    CAS  PubMed  Google Scholar 

  65. Skupien K, Kostrzewa-Nowak D, Oszmianski J, Tarasiuk J (2008) In vitro antileukemia activity of extracts from chokeberry (Aronia melanocarpa [Michx] Elliot) and mulberry (Morus alba L.) leaves against sensitive and multidrug resistant HL60 cells. Phytother Res 22:689–694

    CAS  PubMed  Google Scholar 

  66. Nadali F, Pourfathollah AA, Alimoghaddam K et al (2007) Multidrug resistance inhibition by antisense oligonucleotide against MDR1/mRNA in P-glycoproein expressing leukemic cells. Hematology 12:393–401

    CAS  PubMed  Google Scholar 

  67. Stewart AJ, Canitrot Y, Baracchini E et al (1996) Reduction of expression of the multidrug resistance protein (MRP) in human tumor cells by antisense phosphorothioate oligonucleotides. Biochem Pharmacol 51:461–469

    CAS  PubMed  Google Scholar 

  68. Lautier D, Canitrot Y, Deeley RG, Cole SP (1996) Multidrug resistance mediated by the multidrug resistance protein (MRP) gene. Biochem Pharmacol 52:967–977

    CAS  PubMed  Google Scholar 

  69. Kawabata S, Oka M, Shiozawa K et al (2001) Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Biophys Res Commun 280: 1216–1223

    CAS  PubMed  Google Scholar 

  70. Wei HL, Wu YJ, Jing T, Bai DC, Ma LF (2003) Sensitization and apoptosis augmentation of K562/ADM cells by anti-multidrug resistance gene peptide nucleic acid and antisense oligodeoxyribonucleotide. Acta Pharmacol Sin 24:805–811

    CAS  PubMed  Google Scholar 

  71. Alahari SK, DeLong R, Fisher MH et al (1998) Novel chemically modified oligonucleotides provide potent inhibition of P-Glycoprotein expression. J Pharmacol Exp Ther 286:419–428

    CAS  PubMed  Google Scholar 

  72. Ren Y, Wang Y, Zhang Y, Wei D (2008) Overcoming multidrug resistance in human carcinoma cells by an antisense oligodeoxynucleotide-doxorubicin conjugate in vitro and in vivo. Mol Pharmacol 5:579–587

    CAS  Google Scholar 

  73. Tafech A, Bassett T, Sparanese D, Lee CH (2006) Destroying RNA as a therapeutic approach. Curr Med Chem 13:863–881

    CAS  PubMed  Google Scholar 

  74. Kobayashi H, Dorai T, Holland JF, Ohnuma T (1994) Reversal of drug sensitivity in multidrug-resistant tumor cells by an MDR1 (PGY1) ribozyme. Cancer Res 54:1271–1275

    CAS  PubMed  Google Scholar 

  75. Kowalski P, Stein U, Scheffer GL, Lage H (2002) Modulation of the atypical multidrug-resistant phenotype by a hammerhead ribozyme directed against the ABC transporter BCRP/MXR/ABCG2. Cancer Gene Ther 9:579–586

    CAS  PubMed  Google Scholar 

  76. Materna V, Liedert B, Thomale J, Lage H (2005) Protection of platinum-DNA adduct formation and reversal of cisplatin resistance by anti-MRP2 hammerhead ribozymes in human cancer cells. Int J Cancer 115:393–402

    CAS  PubMed  Google Scholar 

  77. Gao P, Zhou GY, Guo LL et al (2007) Reversal of drug resistance in breast carcinoma cells by anti-mdr1 ribozyme regulated by the tumor-specific MUC-1 promoter. Cancer Lett 256:81–89

    CAS  PubMed  Google Scholar 

  78. Kowalski P, Surowiak P, Lage H (2005) Reversal of different drug-resistant phenotypes by an autocatalytic multitarget multiribozyme directed against the transcripts of the ABC transporters MDR1/P-gp, MRP2, and BCRP. Mol Ther 11:508–522

    CAS  PubMed  Google Scholar 

  79. Wu H, Hait WN, Yang J-M (2003) Small interfering RNA-induced suppression of MDR1 (P-Glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 63:1515–1519

    CAS  PubMed  Google Scholar 

  80. Duan Z, Brakora KA, Seiden MV (2004) Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther 3:833–838

    CAS  PubMed  Google Scholar 

  81. Tian X, Zamek-Gliszcznski MJ, Zhang P, Brouwer KL (2004) Modulation of multidrug resistance-associated protein 2 (Mrp2) and Mrp3 expression and function with small interfering RNA in sandwich-cultured rat hepatocytes. Mol Pharmacol 66:1004–1010

    CAS  PubMed  Google Scholar 

  82. Ee PL, He X, Ross DD, Beck WT (2004) Modulation of breast cancer resistance protein (BCRP/ABCG2) gene expression using RNA interference. Mol Cancer Ther 3:1577–1583

    CAS  PubMed  Google Scholar 

  83. Stierle V, Laigle A, Jolles B (2005) Modulation of MDR1 gene expression in multidrug resistant MCF7 cells by low concentration of small interfering RNAs. Biochem Pharmacol 70:1424–1430

    CAS  PubMed  Google Scholar 

  84. Stein U, Walther W, Stege A et al (2008) Complete in vivo reversal of the multidrug resistance phenotype by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Mol Ther 16:178–186

    CAS  PubMed  Google Scholar 

  85. Xiao H, Wu Z, Shen H et al (2008) In vivo reversal of P-glycoprotein-mediated multidrug resistance by efficient delivery of stealth RNAi. Basic Clin Pharmacol Toxicol 103:342–348

    CAS  PubMed  Google Scholar 

  86. Jiang Z, Zhao P, Zhou Z et al (2007) Using attenuated salmonella typhi as tumor targeting vector for MDR1 siRNA delivery: an experimental study. Cancer Biol Ther 6:555–560

    CAS  PubMed  Google Scholar 

  87. Pichler A, Zelcer N, Prior JL, Kuil AJ, Piwnica-Worms D (2005) In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein. Clin Cancer Res 11:4487–4494

    CAS  PubMed  Google Scholar 

  88. Sepp-Lorenzino L, Ruddy MK (2008) Challenges and opportunities for local and systemic delivery of siRNA and antisense oligonucleotides. Nature 84:628–632

    CAS  Google Scholar 

  89. Marthinet E, Divita G, Bernaud J, Rigal D, Baggetto LG (2000) Modulation of the typical multidrug resistance phenotype by targeting the MED-1 region of human MDR1 promoter. Gene Ther 7:1224–1233

    CAS  PubMed  Google Scholar 

  90. Park S, James CD (2003) Lanthionine synthetase components C-like 2 increases cellular sensitivity to adriamycin by decreasing the expression of P-glycoprotein through a transcription-mediated mechanism. Cancer Res 63:723–727

    CAS  PubMed  Google Scholar 

  91. Xu D, Ye D, Fisher M, Juliano RL (2002) Selective inhibition of P-glycoprotein expression in multidrug-resistant tumor cells by a designed transcriptional regulator. J Pharmacol Exp Ther 302:963–971

    CAS  PubMed  Google Scholar 

  92. Bartsevich VV, Juliano RL (2000) Regulation of the MDR1 gene by transcriptional repression selected using peptide combinatorial libraries. Mol Pharmacol 58:1–10

    CAS  PubMed  Google Scholar 

  93. Nwankwo JO (2006) Significant transcriptional down-regulation of the human MDR1 gene by 0naphthoflavone: a proposed hypothesis linking potent CYP gene induction to MDR1 inhibition. Med Hypotheses 68:661–669

    PubMed  Google Scholar 

  94. Jin S, Gorfajn B, Faircloth G, Scotto KW (2000) Ecteinascidin 743, a transcription-targeted chemotherapeutic that inhibits MDR1 activation. Proc Natl Acad Sci USA 97:6775–6779

    CAS  PubMed  Google Scholar 

  95. Tsuruo T, Hamada H, Sato S, Heike Y (1989) Inhibition of multidrug-resistant human tumor growth in athymic mice by anti-P-glycoprotein monoclonal antibodies. Jpn J Cancer Res 80:627–631

    CAS  PubMed  Google Scholar 

  96. Mickisch GH, Pai LH, Gottesman MM, Pastan I (1992) Monoclonal antibody MRK16 reverses the multidrug resistance of multidrug-resistant transgenic mice. Cancer Res 52:4427–4432

    CAS  PubMed  Google Scholar 

  97. Iwahashi T, Okochi E, Ariyoshi K (1993) Specific targeting and killing activities of anti-P-glycoprotein monoclonal antibody MRK16 directed against intrinsically multidrug-resistant human colorectal carcinoma cell lines in the nude mouse model. Cancer Res 53:5475–5482

    CAS  PubMed  Google Scholar 

  98. Watanabe T, Naito M, Kokubu N, Tsuruo T (1997) Regression of established tumors expressing P-glycoprotein by combination of adriamycin, cyclosporine derivatives, and MRK16 antibodies. J Natl Cancer Inst 89:512–518

    CAS  PubMed  Google Scholar 

  99. Goda K, Fenyvesi F, Basco Z (2007) Complete inhibition of P-glycoprotein by simultaneous treatment with a distinct class of modulators and the UIC2 monoclonal antibody. J Pharmacol Exp Ther 320:81–88

    CAS  PubMed  Google Scholar 

  100. Efferth T, Volm M (1993) P-glycoprotein-mediated multidrug resistance by monoclonal antibodies, immunotoxins or antisense oligonucleotides in kidney carcinoma and normal kidney cells. Oncology 50:303–308

    CAS  PubMed  Google Scholar 

  101. Madoulet C, Perrin L, Tosi PF, Albert P (2006) Anti-tumour immunotherapy against mulitdrug resistance. Ann Pharm Fr 64:87–96

    CAS  PubMed  Google Scholar 

  102. Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmocogenomics 9:105–127

    CAS  Google Scholar 

  103. Sauna ZE, Kim I-W, Ambudkar SV (2007) Genomics and the mechanism of P-glycoprotein (ABCB1). J Bioenerg Bio­membr 39:481–487

    CAS  PubMed  Google Scholar 

  104. Kerbel RS (2006) Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 312:1171–1174

    CAS  PubMed  Google Scholar 

  105. Weinberg RA (2007) The rationale treatment of cancer. In: Weinberg RA (ed) The biology of cancer. Garland Science, New York, pp 725–796

    Google Scholar 

  106. Xiong X-B, Uludag H, Lavasanifar A (2008) Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Biomaterials 30(2):242–253

    PubMed  Google Scholar 

  107. Juliano R, Alam MR, Dixit V, Kang H (2008) Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acid Res 36:4158–4171

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chow H. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, C.H. (2010). Reversing Agents for ATP-Binding Cassette Drug Transporters. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics