Skip to main content

Electron Paramagnetic Resonance Oximetry and Redoximetry

  • Protocol
  • First Online:
Advanced Protocols in Oxidative Stress II

Part of the book series: Methods in Molecular Biology ((MIMB,volume 594))

Abstract

Reactive oxygen/nitrogen species (ROS/RNS) have been increasingly recognized as important mediators and play a number of critical roles in cell injury, metabolism, disease pathology, diagnosis, and clinical treatment. Electron paramagnetic resonance (EPR) spectroscopy enables the spectral information at certain spatial position, and, from the observed line-width and signal intensity, the localized tissue oxygenation, and tissue redox status can be determined. We applied in vivo EPR oximetry and redoximetry technique and implemented its physiological/pathophysiological applications, along with the use of biocompatible lithium pthalocyanine (liPc) and nitroxide redox sensitive probes, on in vivo tissue oxygenation and redox profile of the ischemic and reperfused heart in living animals. We have observed that the hypoxia during myocardial ischemia limited mitochondrial respiration and caused a shift of tissue redox status to a more reduced state. ROS/RNS generated at the beginning of reperfusion not only caused a shift of redox status to a more oxidized state which may contribute to the postischemic myocardial injury, but also a marked suppression of in vivo tissue O2 consumption in the postischemic heart through modulation of mitochondrial respiration based on alterations in enzyme activity and mRNA expression of NADH dehydrogenase (NADH-DH) and cytochrome c oxidase (CcO). In addition, ischemic preconditioning was found to be able to markedly attenuate postischemic myocardial hyperoxygenation with less ROS/RNS generation and preservation of mitochondrial O2 metabolism, due to conserved NADH-DH and CcO activities. These studies have demonstrated that EPR oximetry and redoximetry techniques have advanced to a stage that enables in-depth insight in the process of ischemia reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zweier JL, Kuppusamy P, Lutty GA (1988) Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues. Proc Natl Acad Sci U S A 85(11):4046–4050

    Article  PubMed  CAS  Google Scholar 

  2. Zhao X, He G, Chen YR et al (2005) Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport. Circulation 111(22):2966–2972

    Article  PubMed  CAS  Google Scholar 

  3. Lizasoain I, Moro MA, Knowles RG et al (1996) Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem J 314(Pt 3):877–880

    PubMed  CAS  Google Scholar 

  4. Wang P, Zweier JL (1996) Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem 271(46):29223–29230

    Article  PubMed  CAS  Google Scholar 

  5. Wolin MS, Xie YW, Hintze TH (1999) Nitric oxide as a regulator of tissue oxygen consumption. Curr Opin Nephrol Hypertens 8(1):97–103

    Article  PubMed  CAS  Google Scholar 

  6. Ohnishi ST, Ohnishi T, Muranaka S et al (2005) A possible site of superoxide generation in the complex I segment of rat heart mitochondria. J Bioenerg Biomembr 37(1):1–15

    Article  PubMed  CAS  Google Scholar 

  7. Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 138(4):532–543

    Article  PubMed  CAS  Google Scholar 

  8. Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3(3):214–220

    Article  PubMed  CAS  Google Scholar 

  9. Beltran B, Mathur A, Duchen MR et al (2000) The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Proc Natl Acad Sci U S A 97(26):14602–14607

    Article  PubMed  CAS  Google Scholar 

  10. Cleeter MW, Cooper JM, Darley-Usmar VM et al (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 345(1):50–54

    Article  PubMed  CAS  Google Scholar 

  11. Klawitter PF, Murray HN, Clanton TL et al (2002) Reactive oxygen species generated during myocardial ischemia enable energetic recovery during reperfusion. Am J Physiol Heart Circ Physiol 283(4):H1656–H1661

    PubMed  CAS  Google Scholar 

  12. Zweier JL, Chzhan M, Ewert U et al (1994) Development of a highly sensitive probe for measuring oxygen in biological tissues. J Magn Reson B 105(1):52–57

    Article  PubMed  CAS  Google Scholar 

  13. Swartz HM, Dunn JF (2003) Measurements of oxygen in tissues: overview and perspectives on methods. Adv Exp Med Biol 530:1–12

    Article  PubMed  CAS  Google Scholar 

  14. Halpern HJ, Yu C, Peric M et al (1994) Oxymetry deep in tissues with low-frequency electron paramagnetic resonance. Proc Natl Acad Sci U S A 91(26):13047–13051

    Article  PubMed  CAS  Google Scholar 

  15. Liu KJ, Gast P, Moussavi M et al (1993) Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems. Proc Natl Acad Sci U S A 90(12):5438–5442

    Article  PubMed  CAS  Google Scholar 

  16. Stoner JD, Angelos MG, Clanton TL (2004) Myocardial contractile function during postischemic low-flow reperfusion: critical thresholds of NADH and O2 delivery. Am J Physiol Heart Circ Physiol 286(1):H375–H380

    Article  PubMed  CAS  Google Scholar 

  17. Brandes R, Bers DM (1996) Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophys J 71(2):1024–1035

    Article  PubMed  CAS  Google Scholar 

  18. Riess ML, Camara AK, Chen Q et al (2002) Altered NADH and improved function by anesthetic and ischemic preconditioning in guinea pig intact hearts. Am J Physiol Heart Circ Physiol 283(1):H53–H60

    PubMed  CAS  Google Scholar 

  19. Eng J, Lynch RM, Balaban RS (1989) Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys J 55(4):621–630

    Article  PubMed  CAS  Google Scholar 

  20. Al-Mehdi AB, Shuman H, Fisher AB (1997) Intracellular generation of reactive oxygen species during nonhypoxic lung ischemia. Am J Physiol 272(2 Pt 1):L294–L300

    PubMed  CAS  Google Scholar 

  21. Budd SL, Castilho RF, Nicholls DG (1997) Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Lett 415(1):21–24

    Article  PubMed  CAS  Google Scholar 

  22. Zhao H, Kalivendi S, Zhang H et al (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34(11):1359–1368

    Article  PubMed  CAS  Google Scholar 

  23. Tanoue Y, Herijgers P, Meuris B et al (2002) Ischemic preconditioning reduces unloaded myocardial oxygen consumption in an in-vivo sheep model. Cardiovasc Res 55(3):633–641

    Article  PubMed  CAS  Google Scholar 

  24. An J, Camara AK, Rhodes SS et al (2005) Warm ischemic preconditioning improves mitochondrial redox balance during and after mild hypothermic ischemia in guinea pig isolated hearts. Am J Physiol Heart Circ Physiol 288(6):H2620–H2627

    Article  PubMed  CAS  Google Scholar 

  25. Zhu X, Zuo L, Cardounel AJ et al (2007) Characterization of in vivo tissue redox status, oxygenation, and formation of reactive oxygen species in postischemic myocardium. Antioxid Redox Signal 9(4):447–455

    Article  PubMed  CAS  Google Scholar 

  26. Swartz HM, Bacic G, Friedman B et al (1994) Measurements of pO2 in vivo, including human subjects, by electron paramagnetic resonance. Adv Exp Med Biol 361:119–128

    Article  PubMed  CAS  Google Scholar 

  27. Bolli R (1996) The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: an overview. Basic Res Cardiol 91(1):57–63

    Article  PubMed  CAS  Google Scholar 

  28. Angelos MG, Kutala VK, Torres CA et al (2006) Hypoxic reperfusion of the ischemic heart and oxygen radical generation. Am J Physiol Heart Circ Physiol 290(1):H341–H347

    Article  PubMed  CAS  Google Scholar 

  29. Zuo L, Clanton TL (2005) Reactive oxygen species formation in the transition to hypoxia in skeletal muscle. Am J Physiol Cell Physiol 289(1):C207–C216

    Article  PubMed  CAS  Google Scholar 

  30. Shen W, Xu X, Ochoa M et al (1994) Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res 75(6):1086–1095

    Article  PubMed  CAS  Google Scholar 

  31. Al-Obaidi MK, Etherington PJ, Barron DJ et al (2000) Myocardial tissue oxygen supply and utilization during coronary artery bypass surgery: Evidence of microvascular no-reflow. Clin Sci (Lond) 98(3):321–328

    Article  CAS  Google Scholar 

  32. Trochu JN, Bouhour JB, Kaley G et al (2000) Role of endothelium-derived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res 87(12):1108–1117

    Article  PubMed  CAS  Google Scholar 

  33. Roy S, Khanna S, Bickerstaff AA et al (2003) Oxygen sensing by primary cardiac fibroblasts: a key role of p21(Waf1/Cip1/Sdi1). Circ Res 92(3):264–271

    Article  PubMed  CAS  Google Scholar 

  34. Zhu X, Liu B, Zhou S et al (2007) Ischemic preconditioning prevents in vivo hyperoxygenation in postischemic myocardium with preservation of mitochondrial oxygen consumption. Am J Physiol Heart Circ Physiol 293(3):H1442–H1450

    Article  PubMed  CAS  Google Scholar 

  35. Swartz HM, Boyer S, Brown D et al (1992) The use of EPR for the measurement of the concentration of oxygen in vivo in tissues under physiologically pertinent conditions and concentrations. Adv Exp Med Biol 317:221–228

    Article  PubMed  CAS  Google Scholar 

  36. Ilangovan G, Zweier JL, Kuppusamy P (2004) Mechanism of oxygen-induced EPR line broadening in lithium phthalocyanine microcrystals. J Magn Reson 170(1):42–48

    Article  PubMed  CAS  Google Scholar 

  37. Hirata H, He G, Deng Y et al (2008) A loop resonator for slice-selective in vivo EPR imaging in rats. J Magn Reson. 190(1):124–134

    Article  PubMed  CAS  Google Scholar 

  38. He G, Evalappan SP, Hirata H et al (2002) Mapping of the B1 field distribution of a surface coil resonator using EPR imaging. Magn Reson Med 48(6):1057–1062

    Article  PubMed  Google Scholar 

  39. Kuppusamy P, Li H, Ilangovan G et al (2002) Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res 62(1):307–312

    PubMed  CAS  Google Scholar 

  40. Chen YR, Deterding LJ, Tomer KB et al (2000) Nature of the inhibition of horseradish peroxidase and mitochondrial cytochrome c oxidase by cyanyl radical. Biochemistry 39(15):4415–4422

    Article  PubMed  CAS  Google Scholar 

  41. Gong X, Xie T, Yu L et al (2003) The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli. J Biol Chem 278(28):25731–25737

    Article  PubMed  CAS  Google Scholar 

  42. Teng RJ, Ye YZ, Parks DA et al (2002) Urate produced during hypoxia protects heart proteins from peroxynitrite-mediated protein nitration. Free Radic Biol Med 33(9):1243–1249

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

He, G. (2010). Electron Paramagnetic Resonance Oximetry and Redoximetry. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress II. Methods in Molecular Biology, vol 594. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-411-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-411-1_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-410-4

  • Online ISBN: 978-1-60761-411-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics