Skip to main content

Labels and Probes for Live Cell Imaging: Overview and Selection Guide

  • Protocol
  • First Online:
Live Cell Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 591))

Abstract

Fluorescence imaging is an important tool for molecular biology research. There is a wide array of fluorescent labels and activatable probes available for investigation of biochemical processes at a molecular level in living cells. Given the large number of potential imaging agents and numerous variables that can impact the utility of these fluorescent materials for imaging, selection of the appropriate probes can be a difficult task. In this report an overview of fluorescent imaging agents and details on their optical and physical properties that can impact their function are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stokes, G. G. (1852) On the change of refrangibility of light. Phil. Trans. R. Soc. London 142, 463–562.

    Article  Google Scholar 

  2. Köhler, A. (1904) Mikrophotographische einrichtung: eine für ultraviolettes licht (λ = 275 nm) und damit angestellte untersuchungen organischer gewebe. Phys. Z. 5, 666–673.

    Google Scholar 

  3. Stübel, H. (1911) Die fluoreszenz tierischer gewebe in ultraviolettem licht. Pflug. Arch. Ges. Phys. 142, 1–14.

    Article  Google Scholar 

  4. Coons, A. H., Creech, H. J., Jones, R. N., and Berliner, E. (1942) The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45, 159–170.

    CAS  Google Scholar 

  5. Coons, A. H., Creech, H. J., and Jones, R. N. (1941) Immunological properties of an antibody containing a fluroescent group. Proc. Soc. Exp. Biol. Med. 47, 200–202.

    CAS  Google Scholar 

  6. Molecular Probes Inc., Eugene, OR: http://probes.invitrogen.com.

  7. Sigma-Aldrich Corp., St. Louis, MO: http://sigmaaldrich.com.

  8. ATTO-TEC GmbH, Siegen, Germany: http://atto-tec.com.

  9. Dyomics Gmb H, Jena, Germany: http://www.dyomics.com.

  10. GE Healthcare Bio-Sciences Corp., Piscataway, NJ: http://www.gelifesciences.com.

  11. LI-COR Biosciences, Lincoln, NE: http://www.licor.com.

  12. VisEn Medical Inc., Woburn, MA: http://www.visenmedical.com.

  13. Chang, P. V., Prescher, J. A., Hangauer, M. J., and Bertozzi, C. R. (2007) Imaging cell surface glycans with bioorthogonal chemical reporters. J. Am. Chem. Soc. 129, 8400–8401.

    Article  CAS  PubMed  Google Scholar 

  14. Rostovtsev, V. V., Green, L. G., Fokin, V. V., and Sharpless, K. B. (2002) A stepwise Husigen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem., Int. Ed. 41, 2596–2599.

    Article  CAS  Google Scholar 

  15. Shao, F., Weissleder, R., and Hilderbrand, S. A. (2008) Monofunctional carbocyanine dyes for bio- and bioorthogonal conjugation. Bioconjug. Chem. 19, 2487–2491.

    Article  CAS  PubMed  Google Scholar 

  16. Baskin, J. M., Prescher, J. A., Laughlin, S. T., Agard, N. J., Chang, P. V., Miller, I. A., Lo, A., Codelli, J. A., and Bertozzi, C. R. (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA 104, 16793–16797.

    Article  CAS  PubMed  Google Scholar 

  17. Codelli, J. A., Baskin, J. M., Agard, N. J., and Bertozzi, C. R. (2008) Second-generation difluorinated cyclooctynes for copper-free click chemistry. J. Am. Chem. Soc. 130, 11486–11493.

    Article  CAS  PubMed  Google Scholar 

  18. Ning, X. H., Guo, J., Wolfert, M. A., and Boons, G. J. (2008) Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Husigen cycloadditions. Angew. Chem. Int. Ed. 47, 2253–2255.

    Article  CAS  Google Scholar 

  19. Laughlin, S. T., Baskin, J. M., Amacher, S. L., and Bertozzi, C. R. (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667.

    Article  CAS  PubMed  Google Scholar 

  20. Devaraj, N. K., Weissleder, R., and Hilderbrand, S. A. (2008) Tetrazine-based cycloadditions: applications to pretargeted live cell imaging. Bioconjug. Chem. 19, 2297–2299.

    Article  CAS  PubMed  Google Scholar 

  21. Blackman, M. L., Royzen, M., and Fox, J. M. (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519.

    Article  CAS  PubMed  Google Scholar 

  22. Sampath, L., Kwon, S., Ke, S., Wang, W., Schiff, R., Mawad, M. F., and Sevick-Muraca, E. M. (2007) Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. J. Nucl. Med. 48, 1501–1510.

    Article  CAS  PubMed  Google Scholar 

  23. Hicke, B. J., Stephens, A. W., Gould, T., Chang, Y.-F., Lynott, C. K., Heil, J., Borkowski, S., Hilger, C.-S., Cook, G., Warren, S., and Schmidt, P. G. (2006) Tumor targeting by an aptamer. J. Nucl. Med. 47, 668–678.

    CAS  PubMed  Google Scholar 

  24. Von Wallbrunn, A., Höltke, C., Zühlsdorf, M., Heindel, W., Schäfers, M., and Bremer, C. (2007) In vivo imaging of integrin avb3 expression using fluorescence-mediated tomography. Eur. J. Nucl. Med. Mol. Imaging 34, 745–754.

    Article  CAS  Google Scholar 

  25. Garanger, E., Boturyn, D., Jin, Z., Dumy, P., Favrot, M.-C., and Coll, J.-L. (2005) New multifunctional molecular conjugate vector for targeting, imaging, and therapy of tumors. Mol. Ther. 12, 1168–1175.

    Article  CAS  PubMed  Google Scholar 

  26. Jin, Z.-H., Josserand, V., Foillard, S., Boturyn, D., Dumy, P., Favrot, M.-C., and Coll, J.-L. (2007) In vivo optical imaging of integrin avb3 in mice using multivalent or monovalent cRGD targeting vectors. Mol. Cancer 6, 41.

    Article  PubMed  CAS  Google Scholar 

  27. Cheng, Z., Wu, Y., Xiong, Z., Gambhir, S. S., and Chen, X. (2005) Near-infrared fluorescent RGD peptides for optical imaging of integrin avb3 expression in living mice. Bioconjug. Chem. 16, 1433–1441.

    Article  CAS  PubMed  Google Scholar 

  28. Ke, S., Wen, X., Gurfinkel, M., Charnsangavej, C., Wallace, S., Sevick-Muraca, E. M., and Li, C. (2003) Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res. 63, 7870–7875.

    CAS  PubMed  Google Scholar 

  29. Tung, C.-H., Lin, Y., Moon, W. K., and Weissleder, R. (2002) A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging. Chembiochem 3, 784–786.

    Article  CAS  PubMed  Google Scholar 

  30. Weissleder, R., Kelly, K. A., Sun, E. Y., Shtatland, T., and Josephson, L. (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 23, 1418–1423.

    Article  CAS  PubMed  Google Scholar 

  31. Jaye, D. L., Geigerman, C. M., Fuller, R. E., Akyildiz, A., and Parkos, C. A. (2004) Direct fluorochrome labeling of phage display library clones for studying binding specificities: applications in flow cytometry and fluorescence microscopy. J. Immunol. Methods. 295, 119–127.

    Article  CAS  PubMed  Google Scholar 

  32. Kelly, K. A., Bardeesy, N., Anbazhagan, R., Gurumurthy, S., Berger, J., Alencar, H., DePinho, R. A., Mahmood, U., and Weissleder, R. (2008) Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLOS Med. 5, 657–668.

    Article  CAS  Google Scholar 

  33. Kelly, K. A., Setlur, S. R., Ross, R., Anbazhagan, R., Waterman, P., Rubin, M. A., and Weissleder, R. (2008) Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Res. 68, 2286–2291.

    Article  CAS  PubMed  Google Scholar 

  34. Hilderbrand, S. A., Kelly, K. A., Weissleder, R., and Tung, C.-H. (2005) Monofunctional near-infrared fluorochromes for imaging applications. Bioconjug Chem. 16, 1275–1281.

    Article  CAS  PubMed  Google Scholar 

  35. Weissleder, R., and Ntziachristos, V. (2003) Shedding light onto live molecular targets. Nat. Med. 9, 123–128.

    Article  CAS  PubMed  Google Scholar 

  36. Mitchison, T. J. (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell. Biol. 109, 637–652.

    Article  CAS  PubMed  Google Scholar 

  37. Theriot, J. A., and Mitchison, T. J. (1991) Actin microfilament dynamics in locomoting cells. Nature 352, 126–131.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, Y., Zheng, Q., Dakin, K., Xu, K., Martinez, M. L., and Li, W.-H. (2004) New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications. J. Am. Chem. Soc. 126, 4653–4663.

    Article  CAS  PubMed  Google Scholar 

  39. Guo, Y.-M., Chen, S., Shetty, P., Zheng, G., Lin, R., and Li, W.-H. (2008) Imaging dynamic cell-cell junctional coupling in vivo using trojan-LAMP. Nat. Methods 5, 835–841.

    Article  CAS  PubMed  Google Scholar 

  40. Flanagan, J. H., Jr., Khan, S. H., Menchen, S., Soper, S. A., and Hammer, R. P. (1997) Functionalized tricarbocyanine dyes as near-infrared fluorescent probes for biomolecules. Bioconjug. Chem. 8, 751–756.

    Article  CAS  PubMed  Google Scholar 

  41. Narayanan, N., and Patonay, G. (1995) A new method for the synthesis of heptamethine cyanine dyes: synthesis of new near-infrared fluorescent labels. J. Org. Chem. 60, 2391–2395.

    Article  CAS  Google Scholar 

  42. Galande, A. K., Hilderbrand, S. A., Weissleder, R., and Tung, C.-H. (2006) Enzyme-targeted fluorescent imaging probes on a multiple antigenic peptide core. J. Med. Chem. 49, 4715–4720.

    Article  CAS  PubMed  Google Scholar 

  43. Bruchez, M. J., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.

    Article  CAS  PubMed  Google Scholar 

  44. Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N., Peale, F., and Bruchez, M. P. (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum Dots. Nat. Biotechnol. 21, 41–46.

    Article  CAS  PubMed  Google Scholar 

  45. Derfus, A. M., Chan, W. C. W., and Bhatia, S. N. (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18.

    Article  CAS  Google Scholar 

  46. Mancini, M. C., Kairdolf, B. A., Smith, A. M., and Nie, S. (2008) Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo. J. Am. Chem. Soc. 130, 10836–10837.

    Article  CAS  PubMed  Google Scholar 

  47. Månsson, A., Sundberg, M., Balaz, M., Bunk, R., Nicholls, I. A., Olming, P., Tågerud, S., and Montelius, L. (2004) In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophys. Res. Commun. 314, 529–534.

    Article  PubMed  CAS  Google Scholar 

  48. Groc, L., Lafourcade, M., Heine, M., Renner, M., Racine, V., Sibarita, J.-B., Lounis, B., Choquet, D., and Cognet, L. (2007) Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. J. Neurosci. 27, 12433–12437.

    Article  CAS  PubMed  Google Scholar 

  49. Howarth, M., Liu, W., Puthenveetil, J., Zheng, Y., Marshall, L. F., Schmidt, M. M., Wittrup, K. D., Bawendi, M. G., and Ting, A. Y. (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods 5, 397–399.

    Article  CAS  PubMed  Google Scholar 

  50. Miyawaki, A. (2008) Green fluorescent protein glows gold. Cell 135, 987–990.

    Article  CAS  PubMed  Google Scholar 

  51. Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909.

    Article  CAS  PubMed  Google Scholar 

  52. Pakhomov, A. A., and Martynov, V. I. (2008) GFP family: structural insights into spectral tuning. Chem. Biol. 15, 755–764.

    Article  CAS  PubMed  Google Scholar 

  53. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  CAS  PubMed  Google Scholar 

  54. Weiner, O. D., Marganski, W. A., Wu, L. F., Altschuler, S. J., and Kirschner, M. W. (2007) An actin-based wave generator organizes cell motility. PLOS Biol. 5, 2053–2063.

    Article  CAS  Google Scholar 

  55. Weiner, O. D., Rentel, M. C., Ott, A., Brown, G. E., Jedrychowski, M., Yaffe, M. B., Gygi, S. P., Cantley, L. C., Bourne, H. R., and Kirschner, M. W. (2006) Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis. PLOS Biol. 4, 0186–0199.

    Article  CAS  Google Scholar 

  56. Sakaushi, S., Nishida, K., Minamikawa, H., Fukada, T., Oka, S., and Sugimoto, K. (2007) Live imaging of spindle pole disorganization in docetaxel-treated multicolor cells. Biochem. Biophys. Res. Commun. 357, 655–660.

    Article  CAS  PubMed  Google Scholar 

  57. Fukada, T., Senda-Murata, K., Nishida, K., Sakaushi, S., Minamikawa, H., Dotsu, M., Oka, S., and Sugimoto, K. (2007) A multi-fluorescent MDA435 cell line for mitosis inhibitor studies: simultaneous visualization of chromatin, microtubules, and nuclear envelope in living cells. Biosci. Biotechnol. Biochem. 71, 2603–2605.

    Article  CAS  PubMed  Google Scholar 

  58. De Wet, J. R., Wood, K. V., Helinski, D. R., and DeLuca, M. (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. USA. 82, 7870–7873.

    Article  PubMed  Google Scholar 

  59. Lorenz, W. W., McCann, R. O., Longiaru, M., and Cormier, M. J. (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl. Acad. Sci. U.S.A. 88, 4438–4442.

    Article  CAS  PubMed  Google Scholar 

  60. Stolz, U., Velez, S., Wood, K. V., Wood, M., and Feder, J. L. (2003) Darwinian natural selection for orange bioluminescent color in a Jamacian click beetle. Proc. Natl. Acad. Sci. USA. 100, 14955–14959.

    Article  CAS  PubMed  Google Scholar 

  61. Wood, K. V., Lam, Y. A., and McElroy, W. D. (1989) Bioluminescent click beetles revisited. J. Biolumin. Chemilumin. 4, 31–39.

    Article  CAS  PubMed  Google Scholar 

  62. Cohn, D. H., Mileham, A. J., Simon, M. I., and Nealson, K. H. (1985) Nucleotide sequence of the luxA gene of Vibrio harveyi and the complete amino acid sequence of the alpha subunit of bacterial luciferase. J. Biol. Chem. 260, 6139–6146.

    CAS  PubMed  Google Scholar 

  63. Johnston, T. C., Thompson, R. B., and Baldwin, T. O. (1986) Nucleotide sequence of the luxA gene of Vibrio harveyi and the complete amino acid sequence of the beta subunit of bacterial luciferase. J. Biol. Chem. 261, 4805–4811.

    CAS  PubMed  Google Scholar 

  64. Tung, C.-H., Bredow, S., Mahmood, U., and Weissleder, R. (1999) Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjug Chem. 10, 892–896.

    Article  CAS  PubMed  Google Scholar 

  65. Tung, C.-H., Mahmood, U., Bredow, S., and Weissleder, R. (2000) In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 953–4958.

    Google Scholar 

  66. Bremer, C., Tung, C.-H., and Weissleder, R. (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med. 7, 743–748.

    Article  CAS  PubMed  Google Scholar 

  67. Messerli, S. M., Prabhakar, S., Tang, Y., Shah, K., Cortes, M. L., Murthy, V., Weissleder, R., Breakefield, X. O., and Tung, C.-H. (2004) A novel method for imaging apoptosis using a caspase-1 near-infrared fluorescent probe. Neoplasia 6, 95–105.

    Article  CAS  PubMed  Google Scholar 

  68. Jaffer, F. A., Kim, D.-E., Quinti, L., Tung, C.-H., Aikawa, E., Pande, A. N., Kohler, R. H., Shi, G.-P., Libby, P., and Weissleder, R. (2007) Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 115, 2292–2298.

    Article  CAS  PubMed  Google Scholar 

  69. Tanabe, H., Kumagai, N., Tsukahara, T., Ishiura, S., Kominami, E., Nishina, H., and Sugita, H. (1991) Changes of lysosomal proteinase activities and their expression in rat cultured keratinocytes during differentiation. Biochim. Biophys. Acta, Mol. Cell Res. 1094, 281–287.

    Article  CAS  PubMed  Google Scholar 

  70. Selassie, C. D., Kapur, S., Verma, R. P., and Rosario, M. (2005) Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structure-activity relationship study. J. Med. Chem. 48, 7234–7242.

    Article  CAS  PubMed  Google Scholar 

  71. Liu, J., Bhlagat, M., Zhang, C., Diwu, Z., Hoyland, B., and Klaubert, D. H. (1999) Fluorescent molecular probes V: a sensitive caspase-3 substrate for fluorometric assays. Bioorg. Med. Chem. Lett. 9, 3231–3236.

    Article  CAS  PubMed  Google Scholar 

  72. Tzougraki, C., Noula, C., Geiger, R., and Kokotos, G. (1994) Fluorogenic substrates containing 7-Amino-4-methyl-2-quinolinone for aminopeptidase M, chymotrypsin, elastase and trypsin, determination of enzyme activity. Liebigs Ann. Chem., 365–368.

    Google Scholar 

  73. Rotman, B., Zderic, J. A., and Edelstein, M. (1963) Fluorogenic substrates for β-D-dalactosidases and phosphatases derived from fluorescein (3,6-dihydroxyfluoran) and its monomethyl ether. Proc. Natl. Acad. Sci. U.S.A. 50, 1–6.

    Article  CAS  PubMed  Google Scholar 

  74. Takahashi, A., Camacho, P., Lechleiter, J. D., and Herman, B. (1999) Measurement of intracellular calcium. Physiol. Rev. 79, 1089–1125.

    CAS  PubMed  Google Scholar 

  75. Paredes, R. M., Etzler, J. C., Watts, L. T., Zheng, W., and Lechleiter, J. D. (2008) Chemical calcium indicators. Methods 46, 143–151.

    Article  CAS  PubMed  Google Scholar 

  76. Heinonen, E., and Akerman, K. E. (1987) Intracellular free magnesium in synaptosomes measured with entrapped eriochrome blue. Biochim. Biophys. Acta Biomembr. 898, 331–337.

    Article  CAS  Google Scholar 

  77. Gryzkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.

    Google Scholar 

  78. Tsien, R. Y. (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404.

    Article  CAS  PubMed  Google Scholar 

  79. Domaille, D. W., Que, E. L., and Chang, C. J. (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat. Chem. Biol. 4, 168–175.

    Article  CAS  PubMed  Google Scholar 

  80. Kikuchi, K., Komatsu, K., and Nagano, T. (2004) Sensing for cellular application. Curr. Opin. Chem. Biol. 8, 182–191.

    Article  CAS  PubMed  Google Scholar 

  81. Thompson, R. B. (2005) Studying zinc biology with fluorescence: ain’t we got fun? Curr. Opin. Chem. Biol. 9, 526–532.

    Article  CAS  PubMed  Google Scholar 

  82. Walkup, G. K., Burdette, S. C., and Lippard, S. J. (2000) A new cell-permeable fluorescent probe for Zn(II). J. Am. Chem. Soc. 122, 5644–5645.

    Article  CAS  Google Scholar 

  83. Chang, C. J., Nolan, E. M., Jaworski, J., Burdette, S. C., Sheng, M., and Lippard, S. J. (2004) Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc. Chem. Biol. 11, 203–210.

    CAS  PubMed  Google Scholar 

  84. Woodroofe, C. C., Masalha, R., Barnes, K. R., Fredrickson, C. J., and Lippard, S. J. (2004) Membrane-permeable and -impermeable sensors of the zinpyr family and their application to imaging of hippocampal zinc in vivo. Chem. Biol. 11, 1659–1666.

    Article  CAS  PubMed  Google Scholar 

  85. Nolan, E. M., Burdette, S. C., Harvey, J. H., Hilderbrand, S. A., and Lippard, S. J. (2004) Synthesis and characterization of zinc sensors based on a monosubstituted fluorescein platform. Inorg. Chem. 43, 2624–2635.

    Article  CAS  PubMed  Google Scholar 

  86. Nolan, E. M., Ryu, J. W., Jaworski, J., Feazell, R. P., Sheng, M., and Lippard, S. J. (2006) Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization. J. Am. Chem. Soc. 128, 15517–15528.

    Article  CAS  PubMed  Google Scholar 

  87. Hirano, T., Kikuchi, K., Urano, Y., Higuchi, T., and Nagano, T. (2000) Highly zinc-selective fluorescent sensor molecules suitable for biological applications. J. Am. Chem. Soc. 122, 12399–12400.

    Article  CAS  Google Scholar 

  88. Hirano, T., Kikuchi, K., Urano, Y., and Nagano, T. (2002) Improvement and biological applications of fluorescent probes for ainc, ZnAFs. J. Am. Chem. Soc. 124, 6555–6562.

    Article  CAS  PubMed  Google Scholar 

  89. Takeda, A., Nakajima, S., Fuke, S., Sakurada, N., Minami, A., and Oku, N. (2006) Zinc release from schaffer collaterals and its significance. Brain Res. Bull. 68, 442–447.

    Article  CAS  PubMed  Google Scholar 

  90. Komatsu, K., Kikuchi, K., Kojima, H., Urano, Y., and Nagano, T. (2005) Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices. J. Am. Chem. Soc. 127, 10197–10204.

    Article  CAS  PubMed  Google Scholar 

  91. Gee, K. R., Zhou, Z. L., Ton-That, D., Sensi, S. L., and Weiss, J. H. (2002) Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes. Cell Calcium 31, 245–251.

    Article  CAS  PubMed  Google Scholar 

  92. MacDiarmid, C. W., Milanick, M. A., and Eide, D. J. (2003) Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock. J. Biol. Chem. 278, 15065–15072.

    Article  CAS  PubMed  Google Scholar 

  93. Chang, C. J., Jaworski, J., Nolan, E. M., Sheng, M., and Lippard, S. J. (2004) A tautomeric zinc sensor for ratiometric fluorescence imaging: application to nitric oxide-induced release of intracellular zinc. Proc. Natl. Acad. Sci. U.S.A. 101, 1129–1134.

    Article  CAS  PubMed  Google Scholar 

  94. Kiyose, K., Kojima, H., Urano, Y., and Nagano, T. (2006) Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore. J. Am. Chem. Soc. 128, 6548–6549.

    Article  CAS  PubMed  Google Scholar 

  95. Kellum, J. A., Song, M., and Li, J. (2004) Extracellular acidosis and the immune response: clinical and physiologic implications. Crit. Care 8, 331–336.

    Article  PubMed  Google Scholar 

  96. Coakley, R. D., Grubb, B. R., Paradiso, A. M., Gatzy, J. T., Johnson, L. G., Kreda, S. M., O’Neal, W. K., and Boucher, R. C. (2003) Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc. Natl. Acad. Sci. USA 100, 16083–16088.

    Article  CAS  PubMed  Google Scholar 

  97. Gillies, R. J., Raghunand, N., Garcia-Martin, M. L., and Gatenby, R. A. (2004) pH Imaging. IEEE Eng. Med. Biol. Mag. 23, 57–64.

    Article  PubMed  Google Scholar 

  98. Gillies, R. J., Schornack, P. A., Secomb, T. W., and Raghunand, N. (1999) Causes and effects of heterogenous perfusion in tumors. Neoplasia 1, 197–207.

    Article  CAS  PubMed  Google Scholar 

  99. Heiple, J. M., and Taylor, D. L. (1980) Intracellular pH in single motile cells. J. Cell. Biol. 86, 885–890.

    Article  CAS  PubMed  Google Scholar 

  100. Khodorov, B., Valkina, O., and Turovetsky, V. (1994) Mechanisms of stimulus-evoked intracellular acidification in frog nerve fibers. FEBS Lett. 341, 125–127.

    Article  CAS  PubMed  Google Scholar 

  101. Burns, A., Sengupta, P., Zedayko, T., Baird, B., and Weisner, U. (2006) Core/shell fluorescent silica nanoparticles for chemical sensing: towards single cell particle laboratories. Small 2, 723–726.

    Article  CAS  PubMed  Google Scholar 

  102. Rink, T. J., Tsien, R. Y., and Pozzan, T. (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell. Biol. 95, 189–196.

    Article  CAS  PubMed  Google Scholar 

  103. Whitaker, J. E., Haughland, R. P., and Prendergast, F. G. (1991) Spectral and photophysical studies of benz[c]xanthene dyes: dual emission pH sensors. Anal. Biochem. 194, 330–344.

    Article  CAS  PubMed  Google Scholar 

  104. Bassnett, S., Reinisch, L., and Bebee, D. C. (1990) Intracellular pH measurement using single excitation dual emission fluorescence ratios. Am. J. Phys. Cell Physiol. 258, 171–178.

    Google Scholar 

  105. Urano, Y., Asanuma, D., Hama, Y., Koyama, Y., Barrett, T., Kamiya, M., Nagano, T., Watanabe, T., Hasegawa, A., Choyke, P. L., and Kobayashi, H. (2008) Selective molecular imaging of viable cancer cells with pH-activatable fluorescent probes. Nat. Med. 15, 104–109.

    Article  PubMed  CAS  Google Scholar 

  106. Adie, E. J., Kalinka, S., Smith, L., Francis, M. J., Marenghi, A., Cooper, M. E., Briggs, M., Michael, N. P., Milligan, G., and Game, S. (2002) A pH-sensitive fluor, CypHer5, used to monitor agonist-induced G protein-coupled receptor internalization in live cells. BioTechniques 33, 1152–1157.

    CAS  PubMed  Google Scholar 

  107. Cooper, M. E., Gregory, S., Adie, E., and Kalinka, S. (2002) pH-Sensitive cyanine dyes for biological applications. J. Fluoresc. 12, 425–429.

    Article  CAS  Google Scholar 

  108. Hilderbrand, S. A., and Weissleder, R. (2007) Optimized pH-responsive cyanine fluorochromes for detection of acidic environments. Chem. Commun., 2747–2749.

    Google Scholar 

  109. Hilderbrand, S. A., Kelly, K. A., Niedre, M., and Weissleder, R. (2008) Near infrared fluorescence-based bacteriophage particles for ratiometric pH imaging. Bioconjug. Chem. 19, 1635–1639.

    Article  CAS  PubMed  Google Scholar 

  110. Minta, A., and Tsien, R. Y. (1989) Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 264, 19449–19457.

    CAS  PubMed  Google Scholar 

  111. Meuwis, K., Boens, N., De Schryver, F. C., Gallay, J., and Vincent, M. (1995) Photophysics of the fluorescent K+ indicator PBFI. Biophys. J. 68, 2469–2473.

    Article  CAS  PubMed  Google Scholar 

  112. Valentine, J. S., and Hart, P. J. (2003) Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U.S.A. 100, 3617–3622.

    Article  CAS  PubMed  Google Scholar 

  113. Barnham, K. J., Masters, C. L., and Bush, A. I. (2004) Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205–214.

    Article  CAS  PubMed  Google Scholar 

  114. Yang, L. C., McRae, R., Henary, M. M., Patel, R., Lai, B., Vogt, S., and Fahrni, C. J. (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrottron X-ray fluorescence microscopy. Proc. Natl. Acad. Sci. U.S.A. 102, 11178–11184.

    Google Scholar 

  115. Zeng, L., Miller, E. W., Domaille, D. W., and Chang, C. J. (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J. Am. Chem. Soc. 128, 10–11.

    Article  CAS  PubMed  Google Scholar 

  116. Miller, E. W., Zeng, L., Domaille, D. W., and Chang, C. J. (2006) Preparation and use of coppersensor-1, a synthetic fluorophore for live-cell copper imaging. Nat. Protoc. 1, 824–827.

    Article  CAS  PubMed  Google Scholar 

  117. Hua, J., and Wang, Y. G. (2005) A highly selective and sensitive fluorescent chemosensor for Fe(III) in physiological aqueous solution. Chem. Lett. 34, 98–99.

    Article  CAS  Google Scholar 

  118. Xiang, Y., and Tong, A. (2006) A new rhodamine-based chemosensor exhibiting selective Fe(III)-amplified fluorescence. Org. Lett. 8, 1549–1552.

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, M., Gao, Y., Li, M., Yu, M., Li, F., Li, L., Zhu, M., Zhang, J., Yi, T., and Huang, C. (2007) A selective turn-on fluorescent sensor for FeIII and application to bioimaging. Tet. Lett. 48, 3709–3712.

    Article  CAS  Google Scholar 

  120. Lin, W., Yuan, L., Feng, J., and Cao, X. (2008) A fluorescence-enhanced chemodosimeter for Fe3+ based on hydrolysis of a bis(coumarinyl) schiff base. Eur. J. Org. Chem., 2689–2692.

    Google Scholar 

  121. Setsukinai, K.-I., Urano, Y., Kakinuma, K., Majima, H. J., and Nagano, T. (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278, 3170–3175.

    Article  CAS  PubMed  Google Scholar 

  122. Lim, M. H., and Lippard, S. J. (2007) Metal-based turn-on fluorescent probes for sensing nitric oxide. Acc. Chem. Res. 40, 41–51.

    Article  CAS  PubMed  Google Scholar 

  123. Nagano, T., and Yoshimura, T. (2002) Bioimaging of nitric oxide. Chem. Rev. 102, 1235–1269.

    Article  CAS  PubMed  Google Scholar 

  124. Nakatsubo, N., Kojima, H., Sakurai, K., Kikuchi, K., Nagoshi, H., Hirata, Y., Akaike, T., Maeda, H., Urano, Y., Higuchi, T., and Nagano, T. (1998) Improved nitric oxide detection using 2,3-diaminonaphthalene and its application to the evaluation of novel nitric oxide synthase inhibitiors. Biol. Pharm. Bull. 21, 1247–1250.

    CAS  PubMed  Google Scholar 

  125. Kojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., Hirata, Y., and Nagano, T. (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70, 2446–2453.

    Article  CAS  PubMed  Google Scholar 

  126. Gabe, Y., Urano, Y., Kikuchi, K., Kojima, H., and Nagano, T. (2004) Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethane chromophore-rational design of potentially useful bioimaging fluorescence probe. J. Am. Chem. Soc. 126, 3357–3367.

    Article  CAS  PubMed  Google Scholar 

  127. Kojima, H., Hirotani, M., Nakatsubo, N., Kikuchi, K., Urano, Y., Higuchi, T., Hirata, Y., and Nagano, T. (2001) Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal. Chem. 73, 1967–1973.

    Article  CAS  PubMed  Google Scholar 

  128. Sasaki, E., Kojima, H., Nishimatsu, H., Urano, Y., Kikuchi, K., Hirata, Y., and Nagano, T. (2005) Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J. Am. Chem. Soc. 127, 3684–3685.

    Article  CAS  PubMed  Google Scholar 

  129. Lim, M. H., Xu, D., and Lippard, S. J. (2006) Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat. Chem. Biol. 2, 375–380.

    Article  CAS  PubMed  Google Scholar 

  130. Lim, M. H., Wong, B. A., Pitcock, W. H., Mokshagundam, D., Baik, M.-H., and Lippard, S. J. (2006) Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes. J. Am. Chem. Soc. 128, 14364–14373.

    Article  CAS  PubMed  Google Scholar 

  131. Maeda, H., Fukuyasu, Y., Yoshida, S., Fukuda, M., Saeki, K., Matsuno, H., Yamauchi, Y., Yoshida, K., Hirata, K., and Miyamoto, K. (2004) Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angew. Chem., Int. Ed. 43, 2389–2391.

    Article  CAS  Google Scholar 

  132. Maeda, H., Yamamoto, K., Nomura, Y., Kohno, I., Hafsi, L., Ueda, N., Yoshida, S., Fukuda, M., Fukuyasu, Y., Yamauchi, Y., and Itoh, N. (2005) A design of fluorescent probes for superoxide based on a nonredox rechanism. J. Am. Chem. Soc. 127, 68–69.

    Article  CAS  PubMed  Google Scholar 

  133. Xu, K., Tang, B., Huang, H., Yang, G., Chen, Z., Li, P., and An, L. (2005) Strong red fluorescent probes suitable for detecting hydrogen peroxide generated by mice peritoneal macrophages. Chem. Commun., 5974–5976.

    Google Scholar 

  134. Chang, M. C. Y., Pralle, A., Isacoff, E. Y., and Chang, C. J. (2004) A selective, cell permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126, 15392–15393.

    Article  CAS  PubMed  Google Scholar 

  135. Miller, E. W., Albers, A. E., Pralle, A., Isacoff, E. Y., and Chang, C. J. (2005) Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J. Am. Chem. Soc. 127, 16652–16659.

    Article  CAS  PubMed  Google Scholar 

  136. Miller, E. W., Tulyathan, O., Isacoff, E. Y., and Chang, C. J. (2007) Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 3, 263–267.

    Article  CAS  PubMed  Google Scholar 

  137. Albers, A. E., Dickinson, B. C., Miller, E. W., and Chang, C. J. (2008) A red-emitting naphthofluorescein-based fluorescent probe for selective detection of hydrogen peroxide in living cells. Bioorg. Med. Chem. Lett. 18, 5948–5950.

    Article  CAS  PubMed  Google Scholar 

  138. Lee, D., Khaja, S., Velasquez-Castano, J. C., Dasari, M., Sun, C., Petros, J., Taylor, W. R., and Murthy, N. (2007) In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater. 6, 765–769.

    Article  CAS  PubMed  Google Scholar 

  139. Shepherd, J., Hilderbrand, S. A., Waterman, P., Heinecke, J. W., Weissleder, R., and Libby, P. (2007) A fluorescent probe for the detection of myleoperoxidase activity in atherosclerosis-associated macrophages. Chem. Biol. 14, 1221–1231.

    Article  CAS  PubMed  Google Scholar 

  140. Kundu, K., Knight, S. F., Willett, N., Lee, S., Taylor, W. R., and Murthy, N. (2009) Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew. Chem., Int. Ed. 48, 299–303.

    Article  CAS  Google Scholar 

  141. Yang, D., Wang, H.-L., Sun, Z.-N., Chung, N.-W., and Shen, J.-G. (2006) A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells. J. Am. Chem. Soc. 128, 6004–6005.

    Article  CAS  PubMed  Google Scholar 

  142. Seshadri, S., Beiser, A., Selhub, J., Jacques, P. F., Rosenberg, I. H., D’Agostino, R. B., Wilson, P. W. F., and Wolfe, P. A. (2002) Plasma homocysteine as a risk factor for dementia and alzheimer’s disease. New Engl. J. Med. 346, 476–483.

    Article  CAS  PubMed  Google Scholar 

  143. Refsum, H., and Ueland, P. M. (1998) Homocysteine and cardiovascular disease. Annu. Rev. Med. 49, 31–62.

    Article  CAS  PubMed  Google Scholar 

  144. Duan, L., Xu, Y., Qian, X., Wang, F., Liu, J., and Cheng, T. (2008) Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage: symmetrical naphthalimide aldehyde. Tet. Lett. 49, 6624–6627.

    Article  CAS  Google Scholar 

  145. Lin, W., Long, L., Yuan, L., Cao, Z., Chen, B., and Tan, W. (2008) A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Org. Lett. 10, 5577–5580.

    Article  CAS  PubMed  Google Scholar 

  146. Bouffard, J., Kim, Y., Swager, T. M., Weissleder, R., and Hilderbrand, S. A. (2008) A highly selective fluorescent probe for thiol bioimaging. Org. Lett. 10, 37–40.

    Article  CAS  PubMed  Google Scholar 

  147. Jiang, W., Fu, W., Fan, H., Ho, J., and Wang, W. (2007) A highly selective fluorescent probe for thiophenols. Angew. Chem., Int. Ed. 46, 8445–8448.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

A. Hilderbrand, S. (2010). Labels and Probes for Live Cell Imaging: Overview and Selection Guide. In: Papkovsky, D. (eds) Live Cell Imaging. Methods in Molecular Biology, vol 591. Humana Press. https://doi.org/10.1007/978-1-60761-404-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-404-3_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-403-6

  • Online ISBN: 978-1-60761-404-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics