Skip to main content

Matched Cultures of Keratinocytes and Fibroblasts Derived from Normal and NER-Deficient Mouse Models

  • Protocol
  • First Online:
Epidermal Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 585))

Abstract

The uppermost layer of our skin, the epidermis, is formed largely of keratinocytes which constitute the skin’s major barrier function and the first line of defence against environmental physical, chemical and biological agents. The subsequent layer, the dermis, which is mainly formed by fibroblasts, has a more supportive function, containing large amounts of collagen, blood vessels and nerve endings and is less directly affected by external insults. Hence it is likely that keratinocytes and fibroblasts have evolved different strategies to cope with the dangers of the environment. Mouse models with various genetic backgrounds in genome care-taking systems, such as DNA repair processes, are well suited to study differences between these two cell types and their implications for cancer and aging. In this chapter we describe a simple procedure to establish long-term keratinocyte and fibroblast cultures from, respectively, the epidermis and dermis of normal or NER-deficient newborn mice. The importance of the external O2 pressure during the establishment and maintenance of these matched cultures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedberg, E.C. (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1, 22–33.

    Article  PubMed  CAS  Google Scholar 

  2. Lehmann, A.R. (2003) DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 85, 1101–11.

    Article  PubMed  CAS  Google Scholar 

  3. D'Errico, M., Lemma, T., Calcagnile, A., Proietti, D.S., Dogliotti, E. (2007) Cell type and DNA damage specific response of human skin cells to environmental agents. Mutat Res 614, 37–47.

    Article  PubMed  Google Scholar 

  4. van Oosten, M., Rebel, H., Friedberg, E.C., van Steeg, H., van der Horst, G.T., van Kranen, H.J., Westerman, A., van Zeeland, A.A., Mullenders, L.H., de Gruijl, F.R. (2000) Differential role of transcription-coupled repair in UVB-induced G2 arrest and apoptosis in mouse epidermis. Proc Natl Acad Sci USA 9, 11268–73.

    Article  Google Scholar 

  5. Alekseev, S., Kool, H., Rebel, H., Fousteri, M., Moser, J., Backendorf, C., de Gruijl, F.R., Vrieling, H., Mullenders, L.H. (2005) Enhanced DDB2 expression protects mice from carcinogenic effects of chronic UV-B irradiation. Cancer Res 65, 10298–306.

    Article  PubMed  CAS  Google Scholar 

  6. Pines, A., Backendorf, C., Alekseev, S., Jansen, J.G., de Gruijl, F.R., Vrieling, H., Mullenders, L.H. (2008) Differential repair of UV photoproducts in murine keratinocytes and fibroblasts is mediated by differential activity of UV-DDB. DNA Repair (Amst) 8 N 53–61.

    Google Scholar 

  7. Backendorf, C., de Wit, J., van Oosten, M., Stout, G.J., Mitchell, J.R., Borgstein, A.M., van der Horst, G.T., de Gruijl, F.R., Brouwer, J., Mullenders, L.H., Hoeijmakers, J.H. (2005). Repair characteristics and differentiation propensity of long-term cultures of epidermal keratinocytes derived from normal and NER-deficient mice. DNA Repair (Amst) 4, 1325–36.

    Article  CAS  Google Scholar 

  8. Stout, G.J., van Oosten, M., Acherrat, F.Z., de Wit, J., Vermeij, W.P., Mullenders, L.H., Gruijl, F.R., Backendorf, C. (2005) Selective DNA damage responses in murine Xpa-/-, Xpc-/- and Csb-/- keratinocyte cultures. DNA Repair (Amst) 4, 1337–44.

    Article  CAS  Google Scholar 

  9. Stout, G.J., Westdijk, D., Calkhoven, D.M., Pijper, O., Backendorf, C., Willemze, R., Mullenders, L.H., de Gruijl, F.R. (2005). Epidermal transit of replication-arrested, undifferentiated keratinocytes in UV-exposed XPC mice: an alternative to in situ apoptosis. Proc Natl Acad Sci USA 27, 18980–85.

    Article  Google Scholar 

  10. Rheinwald, J.G., Green, H. (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–43.

    Article  PubMed  CAS  Google Scholar 

  11. Hager, B., Bickenbach, J.R., Fleckman, P. (1999) Long-term culture of murine epidermal keratinocytes. J Invest Dermatol 112, 971–76.

    Article  PubMed  CAS  Google Scholar 

  12. Caldelari, R., Suter, M.M., Baumann, D., de Bruin, A., Muller, E. (2000) Long-term culture of murine epidermal keratinocytes. J Invest Dermatol 114, 1064–65.

    Article  PubMed  CAS  Google Scholar 

  13. Menon, G.K., Grayson, S., Elias, P.M. (1985) Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol 84, 508–12.

    Article  PubMed  CAS  Google Scholar 

  14. Lichti, U., Anders, J., Yuspa, S.H. (2008) Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc 3, 799–810.

    Article  PubMed  CAS  Google Scholar 

  15. Stücker, M., Struk, A., Altmeyer, P., Herde, M., Baumgärtl, H., Lübbers, D.W. (2002) The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. J Physiol 538, 985–94.

    Article  PubMed  Google Scholar 

  16. Ngo, M.A., Sinitsyna, N.N., Qin, Q., Rice, R.H. (2007). Oxygen-dependent differentiation of human keratinocytes. J Invest Dermatol 127, 354–61.

    Article  PubMed  CAS  Google Scholar 

  17. Brennan, J.K., Mansky, J., Roberts, G., Lichtman, M.A. (1975) Improved methods for reducing calcium and magnesium concentrations in tissue culture medium: application to studies of lymphoblast proliferation in vitro. In Vitro 11, 354–60.

    Article  PubMed  CAS  Google Scholar 

  18. Werner, S. (1998) Keratinocyte growth factor: a unique player in epithelial repair processes. Cytokine Growth Factor Rev 9, 153–65.

    Article  PubMed  CAS  Google Scholar 

  19. Steiling, H., Werner, S. (2003) Fibroblast growth factors: key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol 14, 533–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

CB would like to thank Ulrike Lichti, Dave Morgan, Adam Glick and Stuart Yuspa (NIH/NCI/CCR, Bethesda, MD) for their hospitality and help during early stages of this project. Jan Hoeijmakers (Genetics, EUR, Rotterdam), Leon Mullenders (Toxicology, LUMC, Leiden) and Frank de Gruijl (Dermatology, LUMC, Leiden) are acknowledged for supplying normal and NER-deficient mice and for their continuous interest and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pines, A., Backendorf, C. (2010). Matched Cultures of Keratinocytes and Fibroblasts Derived from Normal and NER-Deficient Mouse Models. In: Turksen, K. (eds) Epidermal Cells. Methods in Molecular Biology, vol 585. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-380-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-380-0_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-379-4

  • Online ISBN: 978-1-60761-380-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics