Skip to main content

Quantitative Fluorescence Microscopy Techniques

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 586))

Summary

Fluorescence microscopy is a non-invasive technique that allows high resolution imaging of cytoskeletal structures. Advances in the field of fluorescent labelling (e.g., fluorescent proteins, quantum dots, tetracystein domains) and optics (e.g., super-resolution techniques and quantitative methods) not only provide better images of the cytoskeleton, but also offer an opportunity to quantify the complex of molecular events that populate this highly organised, yet dynamic, structure.

For instance, fluorescence lifetime imaging microscopy and Förster resonance energy transfer imaging allow mapping of protein–protein interactions; furthermore, techniques based on the measurement of photobleaching kinetics (e.g., fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and fluorescence localisation after photobleaching) permit the characterisation of axonal transport and, more generally, diffusion of relevant biomolecules.

Quantitative fluorescence microscopy techniques offer powerful tools for understanding the physiological and pathological roles of molecular machineries in the living cell.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Diaspro, A. (2001) Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances. Wiley-Liss, New York, p. 576

    Google Scholar 

  2. Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  3. Wouters, F. S., Verveer, P. J., and Bastiaens, P. I. (2001) Imaging biochemistry inside cells. Trends in Cell Biology 11, 203–211

    Article  CAS  PubMed  Google Scholar 

  4. Clegg, R. M. (1995) Fluorescence resonance energy transfer. Current Opinion in Biotechnology 6, 103–110

    Article  CAS  PubMed  Google Scholar 

  5. Jares-Erijman, E. A., and Jovin, T. M. (2003) FRET imaging. Nature Biotechnology 21, 1387–1395

    Article  CAS  PubMed  Google Scholar 

  6. Jares-Erijman, E. A., and Jovin, T. M. (2006) Imaging molecular interactions in living cells by FRET microscopy. Current Opinion in Chemical Biology 10, 409–416

    Article  CAS  PubMed  Google Scholar 

  7. Elder, A. D., Domin, A., Kaminski-Schierle, G. S., Lindon, C., Pines, A., Esposito, A., and Kaminski, C. F. (2009) A quantitative protocol for dynamic measurements of protein interactions by FRET-sensitized fluorescence emission. Journal of the Royal Society Interface 6(S1), S59–S81

    Article  CAS  Google Scholar 

  8. Hoppe, A., Christensen, K., and Swanson, J. A. (2002) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophysical Journal 83, 3652–3664

    Article  CAS  PubMed  Google Scholar 

  9. Song, W., Wu, J., Ge, G., and Lin, Q. (2008) Two domains of the epidermal growth factor receptor are involved in cytoskeletal interactions. Biochemical and Biophysical Research Communications 370, 589–593

    Article  CAS  PubMed  Google Scholar 

  10. Cai, X. M., Lietha, D., Ceccarelli, D. F., Karginov, A. V., Rajfur, Z., Jacobson, K., Hahn, K. M., Eck, M. J., and Schaller, M. D. (2008) Spatial and temporal regulation of focal adhesion kinase activity in living cells. Molecular and Cellular Biology 28, 201–214

    Article  CAS  PubMed  Google Scholar 

  11. Gadella, T. W. Jr., Jovin, T. M., and Clegg, R. M. (1993) Fluorescence lifetime imaging microscopy (FLIM) – spatial-resolution of microstructures on the nanosecond time-scale. Biophysical Chemistry 48, 221–239

    Article  CAS  Google Scholar 

  12. Becker, W., Bergmann, A., Hink, M. A., Konig, K., Benndorf, K., and Biskup, C. (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microscopy Research and Technique 63, 58–66

    Article  CAS  PubMed  Google Scholar 

  13. Esposito, A., Gerritsen, H. C., Wouters, F. S., and Resch-Genger, U. (2007) In: Wolfbeis, O. S. (Ed.) Standardization in Fluorometry: State of the Art and Future Challenges, Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Sanders, R., Draaijer, A., Gerritsen, H. C., Houpt, P. M., and Levine, Y. K. (1995) Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. Analytical Biochemistry 227, 302–308

    Article  CAS  PubMed  Google Scholar 

  15. Esposito, A., Gralle, M., Dani, M. A. C., Lange, D., and Wouters, F. S. (2008) pHlameleons: a family of FRET-based protein sensors for quantitative pH imaging. Biochemistry 47, 13115–13126

    Article  CAS  PubMed  Google Scholar 

  16. Agronskaia, A. V., Tertoolen, L., and Gerritsen, H. C. (2004) Fast fluorescence lifetime imaging of calcium in living cells. Journal of Biomedical Optics 9, 1230–1237

    Article  CAS  PubMed  Google Scholar 

  17. Webb, S. E. D., Gu, Y., Leveque-Fort, S., Siegel, J., Cole, M. J., Dowling, K., Jones, R., French, P. M. W., Neil, M. A. A., Juskaitis, R., Sucharov, L. O. D., Wilson, T., and Lever, M. J. (2002) A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning. Review of Scientific Instruments 73, 1898–1907

    Article  CAS  Google Scholar 

  18. Esposito, A., Wouters, F. S., Bonifacino, J. S., Dasso, M., Harford, J. B., Lippincott-Schwartz, J., and Yamada, K. M. (2004) Fluorescence lifetime imaging microscopy. In: Bonifacino, J. S., Dasso, M., Harford, J. B., Lippincott-Schwartz, J., and Yamada, K. M. (Eds.) Current Protocols in Cell Biology. Wiley, New York, NY

    Google Scholar 

  19. Elder, A. D., Frank, J. H., Swartling, J., Dai, X., and Kaminski, C. F. (2006) Calibration of a wide-field frequency–domain fluorescence lifetime microscopy system using light emitting diodes as light sources. Journal of Microscopy 224, 166–180

    Article  CAS  PubMed  Google Scholar 

  20. Esposito, A., Dohm, C. P., Kermer, P., Bahr, M., and Wouters, F. S. (2007) a-synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton. Neurobiology of Disease 26, 521–531

    Article  CAS  PubMed  Google Scholar 

  21. Legg, J. W., Lewis, C. A., Parsons, M., Ng, T., and Isacke, C. M. (2002) A novel PKC-regulated mechanism controls CD44-ezrin association and directional cell motility. Nature Cell Biology 4, 399–407

    Article  CAS  PubMed  Google Scholar 

  22. Reits, E. A. J., and Neefjes, J. J. (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nature Cell Biology 3, E145–EE47

    Article  CAS  PubMed  Google Scholar 

  23. Stagi, M., Dittrich, P. S., Frank, N., Iliev, A. I., Schwille, P., and Neumann, H. (2005) Breakdown of axonal synaptic vesicle precursor transport by microglial nitric oxide. Journal of Neuroscience 25, 352–362

    Article  CAS  PubMed  Google Scholar 

  24. Iliev, A. I., Ganesan, S., Bunt, G., and Wouters, F. S. (2006) Removal of pattern-breaking sequences in microtubule binding repeats produces instantaneous tau aggregation and toxicity. Journal of Biological Chemistry 281, 37195–37204

    Article  CAS  PubMed  Google Scholar 

  25. Gordon, G. W., Berry, G., Liang, X. H., Levine, B., and Herman, B. (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophysical Journal 74, 2702–2713

    Article  CAS  PubMed  Google Scholar 

  26. Esposito, A. (2006) Molecular and Cellular Quantitative Microscopy: Theoretical Investigations, Technological Developments and Applications to the Neurosciences. Utrecht University, The Netherlands

    Google Scholar 

  27. Mao, S., Benninger, R. K. P., Yan, Y. L., Petchprayoon, C., Jackson, D., Easley, C. J., Piston, D. W., and Marriott, G. (2008) Optical lock-in detection of FRET using synthetic and genetically encoded optical switches. Biophysical Journal 94, 4515–4524

    Article  CAS  PubMed  Google Scholar 

  28. Wouters, F. S., Bastiaens, P. I., Wirtz, K. W., and Jovin, T. M. (1998) FRET microscopy demonstrates molecular association of non-specific lipid transfer protein (nsL-TP) with fatty acid oxidation enzymes in peroxisomes. EMBO J 17, 7179–7189

    Article  CAS  PubMed  Google Scholar 

  29. Berney, C., and Danuser, G. (2003) FRET or no FRET: a quantitative comparison. Biophysical Journal 84, 3992–4010

    Article  CAS  PubMed  Google Scholar 

  30. Valentin, G., Verheggen, C., Piolot, T., Neel, H., Coppey-Moisan, M., and Bertrand, E. (2005) Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nature Methods 2, 801

    Article  CAS  PubMed  Google Scholar 

  31. Piston, D. W., and Kremers, G. J. (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends in Biochemical Sciences 32, 407–414

    Article  CAS  PubMed  Google Scholar 

  32. Elangovan, M., Wallrabe, H., Chen, Y., Day, R. N., Barroso, M., and Periasamy, A. (2003) Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29, 58–73

    Article  CAS  PubMed  Google Scholar 

  33. Feige, J. N., Sage, D., Wahli, W., Desvergne, B., and Gelman, L. (2005) PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microscopy Research and Technique 68, 51–58

    Article  CAS  PubMed  Google Scholar 

  34. Gerritsen, H. C., Asselbergs, M. A., Agronskaia, A. V., and Van Sark, W. G. (2002) Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. Journal of Microscopy 206, 218–224

    Article  CAS  PubMed  Google Scholar 

  35. Esposito, A., Gerritsen, H. C., and Wouters, F. S. (2005) Fluorescence lifetime heterogeneity resolution in the frequency-domain by Lifetime Moments Analysis (LiMA). Biophysical Journal 89, 4286–4299

    Article  CAS  PubMed  Google Scholar 

  36. Colyer, R. A., Lee, C., and Gratton, E. (2007) A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microscopy Research and Technique 71, 201–213

    Article  Google Scholar 

  37. Ghiggino, K. P., Harris, M. R., and Spizzirri, P. G. (1992) Fluorescence lifetime measurements using a novel fiberoptic laser scanning confocal microscope. Review of Scientific Instruments 63, 2999–3002

    Article  CAS  Google Scholar 

  38. Buurman, E. P., Sanders, R., Draaijer, A., Gerritsen, H. C., Vanveen, J. J. F., Houpt, P. M., and Levine, Y. K. (1992) Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 14, 155–159

    Google Scholar 

  39. Wang, X. F., Uchida, T., and Minami, S. (1989) A fluorescence lifetime distribution measurement system based on phase-resolved detection using an image dissector tube. Applied Spectroscopy 43, 840–845

    Article  CAS  Google Scholar 

  40. Morgan, C. G., Mitchell, A. C., and Murray, J. G. (1990) Nanosecond time-resolved fluorescence microscopy: principles and practice. Transactions of the Royal Microscopical Society 1, 463–466

    Google Scholar 

  41. Gratton, E., Breusegem, S., Sutin, J., Ruan, Q., and Barry, N. (2003) Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. Journal of Biomedical Optics 8, 381–390

    Article  PubMed  Google Scholar 

  42. O’Connor, D. V., and Phillips, D. (1984) Time Correlated Single Photon Counting. Academic Press, London

    Google Scholar 

  43. Gerritsen, H. C., Agronskaia, S., Bader, A., and Esposito, A. Time Domain FLIM: theory and Instrumentation in FRET & FLIM Imaging Techniques, Gadella, T. W. G ed. Series Laboratory techniques in biochemistry & molecular biology, van der Vliet PC and Pillai S eds., 33, 95–132

    Google Scholar 

  44. Stiel, H., Teuchner, K., Paul, A., Leupold, D., and Kochevar, I. E. (1996) Quantitative comparison of excited state properties and intensity-dependent photosensitization by rose bengal. Journal of Photochemistry and Photobiology B 33, 245–254

    Article  CAS  Google Scholar 

  45. Gadella, T. W., Jr., Clegg, R. M., and Jovin, T. M. (1994) Fluorescence lifetime imaging microscopy: pixel-by-pixel analysis of phase-modulation data. Bioimaging 2, 139–159

    Article  CAS  Google Scholar 

  46. Esposito, A., Gerritsen, H. C., Lustenberger, F., Oggier, T., and Wouters, F. S. (2006) Innovating lifetime microscopy: a compact and simple tool for the life sciences, screening and diagnostics. Journal of Biomedical Optics 11, 34016

    Article  PubMed  Google Scholar 

  47. Squire, A., Verveer, P. J., and Bastiaens, P. I. (2000) Multiple frequency fluorescence lifetime imaging microscopy. Journal of Microscopy 197(Pt 2), 136–149

    Article  CAS  PubMed  Google Scholar 

  48. Hanley, Q. S., and Ramkumar, V. (2005) An internal standardization procedure for spectrally resolved fluorescence lifetime imaging. Applied Spectroscopy 59, 261–266

    Article  CAS  PubMed  Google Scholar 

  49. Hanley, Q. S., Subramaniam, V., Arndt-Jovin, D. J., and Jovin, T. M. (2001) Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression. Cytometry 43, 248–260

    Article  CAS  PubMed  Google Scholar 

  50. van Munster, E. B., and Gadella, T. W., Jr. (2004) Suppression of photobleaching-induced artifacts in frequency-domain FLIM by permutation of the recording order. Cytometry 58A, 185–194

    Article  Google Scholar 

  51. van Munster, E. B., and Gadella, T. W., Jr. (2004) phiFLIM: a new method to avoid aliasing in frequency-domain fluorescence lifetime imaging microscopy. Journal of Microscopy 213, 29–38

    Article  PubMed  Google Scholar 

  52. Esposito, A., Dohm, C. P., Bahr, M., and Wouters, F. S. (2007) Unsupervised fluorescence lifetime imaging microscopy for high-content and high-throughput screening. Molecular and Cellular Proteomics 68, 1446–1454

    Article  Google Scholar 

  53. Schneider, P. C., and Clegg, R. M. (1997) Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications. Review of Scientific Instruments 68, 4107–4119

    Article  CAS  Google Scholar 

  54. Clegg, R. M., Schneider, P. C., and Slavik, J. (1996) Fluorescence lifetime-resolved imaging microscopy: a general description of lifetime-resolved imaging measurements. In: Slavik, J. (Ed.) Fluorescence Microscopy and Fluorescence Probes, Plenum Press, New York, pp. 15–33

    Google Scholar 

  55. Testa, I., Parazzoli, D., Barozzi, S., Garre, M., Faretta, M., and Diaspro, A. (2008) Spatial control of pa-GFP photoactivation in living cells. Journal of Microscopy-Oxford 230, 48–60

    Article  CAS  Google Scholar 

  56. Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G. H. (2002) Photobleaching and photoactivation: following protein dynamics in living cells. Nature Biotechnology 20, 87–90

    Article  Google Scholar 

  57. Mazza, D., Braeckmans, K., Cella, F., Testa, I., Vercauteren, D., Demeester, J., De Smedt, S. S., and Diaspro, A. (2008) A new FRAP/FRAPa method for three-dimensional diffusion measurements based on multiphoton excitation microscopy. Biophysical Journal 95, 13

    Article  Google Scholar 

  58. Teissie, J., Tocanne, J. F., and Baudras, A. (1978) A fluorescence approach of the determination of translational diffusion coefficients of lipids in phospholipid monolayer at the air–water interface. European Journal of Biochemistry 83, 77–85

    Article  CAS  PubMed  Google Scholar 

  59. Iliev, A. I., and Wouters, F. S. (2007) Application of simple photobleaching microscopy techniques for the determination of the balance between anterograde and retrograde axonal transport. Journal of Neuroscience Methods 161, 39–46

    Article  PubMed  Google Scholar 

  60. Sprague, B. L., Pego, R. L., Stavreva, D. A., and McNally, J. G. (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophysical Journal 86, 3473–3495

    Article  CAS  PubMed  Google Scholar 

  61. Lippincott-Schwartz, J., Snapp, E., and Kenworthy, A. (2001) Studying protein dynamics in living cells. Nature Reviews. Molecular cell biology 2, 444–456

    Article  CAS  PubMed  Google Scholar 

  62. Grailhe, R., Merola, F., Ridard, J., Couvignou, S., Le Poupon, C., Changeux, J. P., and Laguitton-Pasquier, H. (2006) Monitoring protein interactions in the living cell through the fluorescence decays of the cyan fluorescent protein. Chemphyschem 7, 1442–1454

    Article  CAS  PubMed  Google Scholar 

  63. Bunt, G., and Wouters, F. S. (2004) Visualization of molecular activities inside living cells with fluorescent labels. International Review of Cytology 237, 205–277

    Article  CAS  PubMed  Google Scholar 

  64. Palamidessi, A., Frittoli, E., Garre, M., Faretta, M., Mione, M., Testa, I., Diaspro, A., Lanzetti, L., Scita, G., and Di Fiore, P. P. (2008) Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134, 135–147

    Article  CAS  PubMed  Google Scholar 

  65. Takanishi, C. L., Bykova, E. A., Cheng, W., and Zheng, J. (2006) GFP-based FRET analysis in live cells. Brain Research 1091, 132–139

    Article  CAS  PubMed  Google Scholar 

  66. Zal, T., and Gascoigne, N. R. J. (2004) Photobleaching-corrected FRET efficiency imaging of live cells. Biophysical Journal 86, 3923–3939

    Article  CAS  PubMed  Google Scholar 

  67. Digman, M., Caiolfa, V. R., Zamai, M., and Gratton, E. (2007) The Phasor approach to fluorescence lifetime imaging analysis. Biophysical Journal 94, L14–L16

    Article  PubMed  Google Scholar 

  68. Hanley, Q. S., and Clayton, A. H. (2005) AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers. Journal of Microscopy 218, 62–67

    Article  CAS  PubMed  Google Scholar 

  69. Wouters, F. S., and Esposito, A. (2008) Quantitative analysis of fluorescence lifetime imaging made easy. HFSP Journal 2, 7

    Article  CAS  PubMed  Google Scholar 

  70. Verveer, P. J., and Bastiaens, P. I. (2003) Evaluation of global analysis algorithms for single frequency fluorescence lifetime imaging microscopy data. Journal of Microscopy 209, 1–7

    Article  CAS  PubMed  Google Scholar 

  71. Verveer, P. J., Squire, A., and Bastiaens, P. I. (2000) Global analysis of fluorescence lifetime imaging microscopy data. Biophysical Journal 78, 2127–2137

    Article  CAS  PubMed  Google Scholar 

  72. Vermeer, J. E. M., Van Munster, E. B., Vischer, N. O., and Gadella, T. W. J. (2004) Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy. Journal of Microscopy-Oxford 214, 190–200

    Article  CAS  Google Scholar 

  73. Cole, N. B., Smith, C. L., Sciaky, N., Terasaki, M., Edidin, M., and Lippincott-Schwartz, J. (1996) Diffusional mobility of golgi proteins in membranes of living cells. Science 273, 797

    Article  CAS  PubMed  Google Scholar 

  74. Domin, A., Hooper, R., Rauch, U., Lindon, A. C., and Kaminski, C. F. (2003) Linked-fluorophore FRET calibration and FRET studies of the cyclin-CDK switch in mammalian cells. Proceedings of SPIE 5139, 7

    Article  Google Scholar 

Download references

Acknowledgements

AE is funded by the Engineering and Physical Sciences Research Council (EPSRC, EP/F044011/1), UK. AII is financed by the Emmy Noether Programme of the German Science Foundation (Deutsche Forschungsgemeinschaft (DFG)) and the DFG-funded Rudolf Virchow Zentrum for Experimental Medicine at the University of Würzburg, Germany. CFK is funded by the Leverhulme Trust (UK), the Biotechnology and Biological Sciences Research Council (BBSRC, UK) and the EPSRC. FSW is financed by the Excellence Cluster 171 “Microscopy on the Nanometer Scale” of the DFG-funded Center for Molecular Physiology of the Brain (CMPB) and by the German Federal Ministry for Education and Research (BMBF). AD is funded by the University of Genoa and the Ministry of Education, University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Esposito, A. et al. (2009). Quantitative Fluorescence Microscopy Techniques. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 586. Humana Press. https://doi.org/10.1007/978-1-60761-376-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-376-3_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-375-6

  • Online ISBN: 978-1-60761-376-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics