Skip to main content

Proteomic Tools for the Analysis of Cytoskeleton Proteins

  • Protocol
  • First Online:
Cytoskeleton Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 586))

  • 3392 Accesses

Summary

Proteomic tools have become an essential part of the tool kit of the molecular biologist, and provide techniques for detecting homologous sequences, recognizing functional domains, modeling, and analyzing the three-dimensional structure for any given protein sequence. Although a wealth of structural and functional information is available for a large number of members of the various classes of cytoskeletal proteins, many more members remain uncharacterized. These computational tools that are freely and easily accessible to the scientific community provide an excellent starting point to predict the structural and functional properties of such partially or fully uncharacterized protein sequences, and can lead to elegantly designed experiments to probe the hypothesized function. This chapter discusses various proteomic analysis tools with a focus on protein structure and function predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guex N, Diemand A, Peitsch MC. Protein modelling for all. Trends Biochem Sci. (1999) 24:364–367.

    Article  CAS  PubMed  Google Scholar 

  2. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. (1997) 18:2714–2723.

    Article  CAS  PubMed  Google Scholar 

  3. Consortium TU. The Universal Protein Resource (UniProt). Nucleic Acids Res. (2008) 36:D190–D195.

    Article  Google Scholar 

  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. (1990) 215:403–410.

    CAS  PubMed  Google Scholar 

  5. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. (1997) 25:3389–3402.

    Article  CAS  PubMed  Google Scholar 

  6. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al. Clustal W and Clustal X version 2.0. Bioinformatics. (2007) 23:2947–2948.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. (1994) 22:4673–4680.

    Article  CAS  PubMed  Google Scholar 

  8. Thompson JD, Higgins DG, Gibson TJ. Improved sensitivity of profile searches through the use of sequence weights and gap excision. Comput Appl Biosci. (1994) 10:19–29.

    CAS  PubMed  Google Scholar 

  9. Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E et al. The 20 years of PROSITE. Nucleic Acids Res. (2008) 36:D245–D249.

    Article  CAS  PubMed  Google Scholar 

  10. Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A. (1998) 95:5857–5864.

    Article  CAS  PubMed  Google Scholar 

  11. Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. (2006) 34:D257–D260.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng J, Randall AZ, Sweredoski MJ, Baldi P. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res. (2005) 33:W72–W76.

    Article  CAS  PubMed  Google Scholar 

  13. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al. The Protein Data Bank. Nucleic Acids Res. (2000) 28:235–242.

    Article  CAS  PubMed  Google Scholar 

  14. Moult, J. (2005) A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 15, 285–289.

    Google Scholar 

  15. Baker D, Sali A. Protein structure prediction and structural genomics. Science. (2001) 294:93–96.

    Article  CAS  PubMed  Google Scholar 

  16. Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. (2005) 33:W244–W248.

    Article  PubMed  Google Scholar 

  17. Zhang P, Talluri S, Deng H, Branton D, Wagner G. Solution structure of the pleckstrin homology domain of Drosophila beta-spectrin. Structure. (1995) 3:1185–1195.

    Article  CAS  PubMed  Google Scholar 

  18. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. (2005) 33:W299–W302.

    Article  CAS  PubMed  Google Scholar 

  19. Laurie AT, Jackson RM. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics. (2005) 21:1908–1916.

    Article  CAS  PubMed  Google Scholar 

  20. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. (1981) 147:195–197.

    Article  CAS  PubMed  Google Scholar 

  21. Mackey AJ, Haystead TA, Pearson WR. Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. Mol Cell Proteomics. (2002) 1:139–147.

    Article  CAS  PubMed  Google Scholar 

  22. Pearson WR. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. (1990) 183:63–98.

    Article  CAS  PubMed  Google Scholar 

  23. Sturrock S, Collins J. MPsrch version 1.3. Biocomputing Research (1993). Unit University of Edinburgh, Edinburgh.

    Google Scholar 

  24. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. (2004) 5:113.

    Article  PubMed  Google Scholar 

  25. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. (2004) 32:1792–1797.

    Article  CAS  PubMed  Google Scholar 

  26. O’Sullivan O, Suhre K, Abergel C, Higgins DG, Notredame C. 3DCoffee: combining protein sequences and structures within multiple sequence alignments. J Mol Biol. (2004) 340:385–395.

    Article  PubMed  Google Scholar 

  27. Notredame C, Holm L, Higgins DG. COFFEE: an objective function for multiple sequence alignments. Bioinformatics. (1998) 14:407–422.

    Article  CAS  PubMed  Google Scholar 

  28. Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. (2000) 302:205–217.

    Article  CAS  PubMed  Google Scholar 

  29. Karplus K, Barrett C, Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics. (1998) 14:846–856.

    Article  CAS  PubMed  Google Scholar 

  30. Karplus K, Karchin R, Barrett C, Tu S, Cline M, Diekhans M et al. What is the value added by human intervention in protein structure prediction? Proteins. (2001) Suppl 5:86–91.

    Article  CAS  PubMed  Google Scholar 

  31. Karplus K, Karchin R, Draper J, Casper J, Mandel-Gutfreund Y, Diekhans M et al. Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins. (2003) 53 Suppl 6:491–496.

    Article  CAS  PubMed  Google Scholar 

  32. Karplus K, Katzman S, Shackleford G, Koeva M, Draper J, Barnes B et al. SAM-T04: what is new in protein-structure prediction for CASP6. Proteins. (2005) 61 Suppl 7:135–142.

    Article  CAS  PubMed  Google Scholar 

  33. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. (2000) 16:404–405.

    Article  CAS  PubMed  Google Scholar 

  34. Ouali M, King RD. Cascaded multiple classifiers for secondary structure prediction. Protein Sci. (2000) 9:1162–1176.

    Article  CAS  PubMed  Google Scholar 

  35. Cole C, Barber JD, Barton GJ. The Jpred 3 secondary structure prediction server. Nucleic Acids Res. (2008) 36:W197–W201.

    Article  CAS  PubMed  Google Scholar 

  36. Servant F, Bru C, Carrere S, Courcelle E, Gouzy J, Peyruc D et al. ProDom: automated clustering of homologous domains. Brief Bioinform. (2002) 3:246–251.

    Article  CAS  PubMed  Google Scholar 

  37. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M et al. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. (2007) 35:D237–D240.

    Article  CAS  PubMed  Google Scholar 

  38. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR et al. The Pfam protein families database. Nucleic Acids Res. (2008) 36:D281–D288.

    Article  CAS  PubMed  Google Scholar 

  39. Teodorescu O, Galor T, Pillardy J, Elber R. Enriching the sequence substitution matrix by structural information. Proteins. (2004) 54:41–48.

    Article  CAS  PubMed  Google Scholar 

  40. Meller J, Elber R. Linear programming optimization and a double statistical filter for protein threading protocols. Proteins. (2001) 45:241–261.

    Article  CAS  PubMed  Google Scholar 

  41. Tobi D, Elber R. Distance-dependent, pair potential for protein folding: results from linear optimization. Proteins. (2000) 41:40–46.

    Article  CAS  PubMed  Google Scholar 

  42. Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol. (2001) 310:243–257.

    Article  CAS  PubMed  Google Scholar 

  43. McGuffin LJ, Jones DT. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics. (2003) 19:874–881.

    Article  CAS  PubMed  Google Scholar 

  44. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. (2007) 35:W407–W410.

    Article  PubMed  Google Scholar 

  45. Sippl MJ. Recognition of errors in three-dimensional structures of proteins. Proteins. (1993) 17:355–362.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wywial, E., Dongre, V.N., Singh, S.M. (2009). Proteomic Tools for the Analysis of Cytoskeleton Proteins. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 586. Humana Press. https://doi.org/10.1007/978-1-60761-376-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-376-3_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-375-6

  • Online ISBN: 978-1-60761-376-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics