Skip to main content

Detergent-Extracted Models for the Study of Cilia or Flagella

  • Protocol
  • First Online:
Cytoskeleton Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 586))

Summary

Methods for using non-ionic detergents to produce demembranated and reactivated cilia and flagella are described in detail. Demembranated and reactivated cell models are useful as a research tool for studying motility function in flagella and cilia. When the plasma membrane is removed, the factors regulating motility can be studied under standardized experimental conditions that otherwise would be impossible. Practical insight is provided to understand the important factors in producing stable reactivated models. In addition, several useful variations of the method are presented for different types of mammalian and non-mammalian flagellar and ciliary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szent-Györgyi, A. (1949) Free-energy relations and contraction of actomyosin. Biol. Bull. 96, 140–161.

    Article  PubMed  Google Scholar 

  2. Hoffman-Berling, H. (1955) Geiselmodelle und Adenosintriphosphat. Biochim. Biophys. Acta 16, 146–154.

    Article  Google Scholar 

  3. Bishop, D.W. and Hoffman-Berling, H. (1959) Extracted mammalian sperm models. I. Preparation and reactivation with adenosine triphosphate. J. Cell Comp. Physiol.53, 445–466.

    Article  CAS  PubMed  Google Scholar 

  4. Brokaw, C.J. and Benedict, B. (1968) Mechanochemical coupling in flagella. I. Movement dependent dephosphorylation of ATP by glycerinated spermatozoa. Arch. Biochem. Biophys.125, 770–778.

    Article  CAS  PubMed  Google Scholar 

  5. Gibbons, B.H. and Gibbons, I.R. (1972) Flagellar movement and adenosine triphosphate activity in sea urchin sperm extracted with Triton X-100. J. Cell Biol. 54, 75–97.

    Article  CAS  PubMed  Google Scholar 

  6. Summers, K.E. and Gibbons, I.R. (1973) Effects of trypsin digestion on flagellar structures and their relationship to cell motility. J. Cell Biol. 58, 618–628.

    Article  CAS  PubMed  Google Scholar 

  7. Sale, W.S. and Satir, P. (1977) Direction of active sliding or microtubules in Tetrahymena cilia. Proc. Natl Acad. Sci. U. S. A.74, 2045–2049.

    Article  CAS  PubMed  Google Scholar 

  8. Lindemann, C.B. (1978) A cAMP induced increase in the motility of demembranated bull sperm models. Cell 13, 9–18.

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi, T., Martensen, T., Nath, J., and Flavin, M. (1978) Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem. Biophys. Res. Commun. 81, 1313–1318.

    Article  CAS  PubMed  Google Scholar 

  10. Gibbons, I.R., Cosson, M.P., Evans, J.A., Gibbons, B.H., Houck, B., Martinson, K.H., Sale, W.S., and Tang, W.J. (1978) Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc. Natl Acad. Sci. U. S. A.75, 2220–2224.

    Article  CAS  PubMed  Google Scholar 

  11. Brokaw, C.J. (1979) Calcium-induced asymmetrical beating of Triton-demembranated sea urchin sperm flagella. J. Cell Biol.82, 401–411.

    Article  CAS  PubMed  Google Scholar 

  12. Schmitz, K.A., Holcomb-Wygle, D.L., Oberski, D.J., and Lindemann, C.B. (2000) Measurement of the force produced by an intact bull sperm flagellum in isometric arrest and estimation of the dynein stall force. Biophys. J. 79, 468–478.

    Article  CAS  PubMed  Google Scholar 

  13. Lindemann, C.B. and Kanous, K.S. (1995) “Geometric Clutch” Hypothesis of axonemal function: key issues and testable predictions. Cell Motil. Cytoskeleton 31, 1–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lindemann, C.B. and Gibbons, I.R. (1975) Adenosine triphosphate-induced motility and sliding of filaments in mammalian sperm extracted with Triton X-100. J. Cell Biol. 65, 147–162.

    Article  CAS  PubMed  Google Scholar 

  15. Gibbons, I.R., Evans, J.A., and Gibbons, B.H. (1982) Acetate anions stabilize the latency of dynein 1 ATPase and increase the velocity of tubule sliding in reactivated sperm flagella. Cell Motil. 1(Suppl.), 181–184.

    Google Scholar 

  16. Neill, J.M. and Olds-Clarke, P. (1987) A computer-assisted assay for mouse sperm hyperactivation demonstrates that bicarbonate but not bovine serum albumin is required. Gamete Res.18, 121–140.

    Article  CAS  PubMed  Google Scholar 

  17. Lesich, K.A., Pelle, D.W., and Lindemann, C.B. (2008) Insights into the mechanism of ADP action on flagellar motility derived from studies on bull sperm. Biophys. J. 95, 472–482.

    Article  CAS  PubMed  Google Scholar 

  18. Hamasaki, T., Murtaugh, T.J., Satir, B.H., and Satir, P. (1989) In vitro phosphorylation of Paramecium axonemes and permeabilized cells. Cell Motil. Cytoskeleton 12, 1–11.

    Article  CAS  PubMed  Google Scholar 

  19. Harris, E.H. (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic, San Diego, CA.

    Google Scholar 

  20. Lindemann, C.B., Gardner, T.K., Westbrook, E., and Kanous, K.S. (1991) The calcium-induced curvature reversal of rat sperm is potentiated by cAMP and inhibited by anti-calmodulin. Cell Motil. Cytoskeleton 20, 316–324.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, L.R., Moss, S.B., and Gerton, G.L. (1999) Maintenance of motility in mouse sperm permeabilized with Streptolysin O. Biol. Reprod.60, 683–690.

    Article  CAS  PubMed  Google Scholar 

  22. Goodenough, U.W. (1983) Motile detergent-extracted cells of Tetrahymena and Chlamydomonas. J. Cell Biol.96, 1610–1621.

    Article  CAS  PubMed  Google Scholar 

  23. Horst, C.J. and Witman, G.B. (1995) Reactivation of Chlamydomonas cell models. Methods Cell Biol.47, 207–210.

    Article  CAS  PubMed  Google Scholar 

  24. Hyams, J.S. and Borisy, G.G. (1978) Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J. Cell Sci.33, 235–253.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Danial J. Oberski for testing the adaptation of the method to Chlamydomonas, Lisa J. Macauley for optimizing the mouse sperm reactivation protocol and Kristen C. Ponichter for refining the method of mouse sperm axoneme disintegration. Supported by N.S.F. Grant MCB-0516181.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lindemann, C.B., Lesich, K.A. (2009). Detergent-Extracted Models for the Study of Cilia or Flagella. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 586. Humana Press. https://doi.org/10.1007/978-1-60761-376-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-376-3_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-375-6

  • Online ISBN: 978-1-60761-376-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics