Skip to main content

High Pressure Freezing, Electron Microscopy, and Immuno-Electron Microscopy of Tetrahymena thermophila Basal Bodies

  • Protocol
  • First Online:
Cytoskeleton Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 586))

Summary

Preservation of Tetrahymena thermophila basal body ultrastructure for visualization by transmission electron microscopy is improved by a combination of high pressure freezing (HPF) and freeze substitution (FS). These methods also reliably retain the antigenicity of cellular proteins for immuno-electron microscopy, which enables the precise localization of green fluorescent protein (GFP)-tagged and native basal body proteins. The plastic-embedded samples generated by these methods take full advantage of higher resolution visualization techniques such as electron tomography. We describe protocols for cryofixation, FS, immunolabeling, and staining. Suggestions for trouble shooting and evaluation of specimen quality are discussed. In combination with identification and manipulation of a rapidly expanding list of basal body-associated gene products, these methods are being used to increase our understanding of basal body composition, assembly, and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, R.D. (1969) The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena Pyriformis. J. Cell Biol. 40:716–733.

    Article  CAS  PubMed  Google Scholar 

  2. Frankel, J. and Williams, N.E. (1973) Cortical development in Tetrahymena. In (Elliot, A.M., ed.) The Biology of Tetrahymena Wiley, pp. 375–409.

    Google Scholar 

  3. Collins, K. and Gorovsky, M.A. (2005) Tetrahymena thermophila. Curr. Biol. 9:R317–R318.

    Article  Google Scholar 

  4. Washburn, M.P., Wolters, D., Yates, J.R. 3rd (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19:242–247.

    Article  CAS  PubMed  Google Scholar 

  5. Kilburn, C.L., Pearson, C.G., Romijn, E.P., Meehl, J.B., Giddings, Jr., T.H., Culver, B.P., Yates, J.R. 3rd, Winey, M. (2007) New Tetrahymena basal body protein components identify basal body domain structure. J. Cell Biol. 178:905–912.

    Article  CAS  PubMed  Google Scholar 

  6. Eisen, J.A., Coyne, R.S., Wu, M., Wu, D., Thiagarajan, M., Wortman, J.R., Badger, J.H., Ren, Q., Amedeo, P., Jones, K.M., et al. (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 4:e286.

    Article  PubMed  Google Scholar 

  7. Stemm-Wolf, A.J., Morgan, G., Giddings, Jr., T.H., White, E.A., Marchione, R., McDonald, H. and Winey, M. (2005) Basal body duplication and maintenance require one member of the Tetrahymena thermophila centrin gene family. Mol. Biol. Cell 16:3606–3619.

    Article  CAS  PubMed  Google Scholar 

  8. Shang, Y., Tsao, C.C., and Gorovsky, M.A. (2005) Mutational analyses reveal a novel function of the nucleotide-binding domain of gamma-tubulin in the regulation of basal body biogenesis. J. Cell Biol. 171:1034–1044.

    Article  Google Scholar 

  9. Moor, H. (1987) Theory and practice of high pressure freezing. In (Steinbrecht, R.A. and Zierold, K., eds.) Cryotechniques in Biological Electron Microscopy Springer, Berlin, pp. 175–191.

    Google Scholar 

  10. Gilkey, J.C and Staehelin, L.A. (1986) Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J. Electron Microsc. Tech. 3:177–210.

    Article  Google Scholar 

  11. Giddings, Jr., T.H., O’Toole, E.T., Morphew, M., Mastronarde, D.N., McIntosh, J.R., and Winey, M. (2001) Using rapid freeze and freeze-substitution for the preparation of yeast cells for electron microscopy and three-dimensional analysis. Meth. Cell Biol. 67:27–42.

    Article  CAS  Google Scholar 

  12. Kremer, J.R., Mastronarde, D.N., and McIntosh, J.R. (1996) Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116:71–76.

    Article  CAS  PubMed  Google Scholar 

  13. Mastronarde, D.N. (1997) Dual-axis tomography: An approach with alignment methods that preserve resolution. J. Struct. Biol. 120:343–352.

    Article  CAS  PubMed  Google Scholar 

  14. O’Toole, E.T., Giddings, Jr., T.H., and Dutcher, S.K. (2007) Understanding microtubule organizing centers by comparing mutant and wild-type structures with electron tomography. Meth. Cell Biol. 79:125–143.

    Article  Google Scholar 

  15. Bruns, P.J. and Cassidy-Hanley, D. (2000) Biolistic transformation of macro- and micronuclei. Meth. Cell Biol. 62:501–512.

    Article  CAS  Google Scholar 

  16. Dahl, R. and Staehelin, L.A. (1989) High-pressure freezing for the preservation of biological structure: Theory and practice. J. Elect. Microsc. 13:165–174.

    Article  CAS  Google Scholar 

  17. McDonald, K. (2007) Cryopreparation methods for electron microscopy of selected model systems. Meth. Cell Biol. 79:24–52.

    Google Scholar 

  18. O’Toole, E.T., Giddings, Jr., T.H., McIntosh, J.R., and Dutcher, S.K. (2003) Three-dimensional organization of basal bodies from wild-type and tubulin deletion strains of Chlamydomonas reinhardtii. Mol. Biol. Cell 14:2999–3012.

    Article  PubMed  Google Scholar 

  19. McDonald, K.L. (1999) High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling. Meth. Mol. Biol. 117:77–97.

    Article  CAS  Google Scholar 

  20. McDonald, K.L., Morphew, M., Verkade, P., and Mueller-Reichert, T. (2007) Recent advances in high-pressure freezing: Equipment and specimen loading methods. Meth. Mol. Biol. 369:143–173.

    Article  CAS  Google Scholar 

  21. Nakazawa, Y., Hiraki, M., Kamiya, R., and Hirono, M. (2007) SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr. Biol. 17:2169–2174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work on Tetrahymena is supported by the NIH (RO1 GM074746) and the March of Dimes Birth Defects Foundation (#1-FY07–520).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Meehl, J.B., Giddings, T.H., Winey, M. (2009). High Pressure Freezing, Electron Microscopy, and Immuno-Electron Microscopy of Tetrahymena thermophila Basal Bodies. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 586. Humana Press. https://doi.org/10.1007/978-1-60761-376-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-376-3_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-375-6

  • Online ISBN: 978-1-60761-376-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics