Skip to main content

Studying NK Cell/Dendritic Cell Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 612))

Abstract

Although NK cells were originally identified as “naturally” active cells believed to follow a cell-autonomous activation program, it is now widely accepted that NK cells need to interact with dendritic cells for their full functional activation and for their homeostasis. In this chapter, we will provide an experimental guide to the analysis of NK cell/DC interactions in vitro and in vivo. We have put special emphasis on the recently developed mouse models allowing the inducible and specific ablation of various subsets of DCs and other myeloid cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Herberman, R. B., Nunn, M. E., and Lavrin, D. H. (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 16, 216–229.

    Article  CAS  PubMed  Google Scholar 

  2. Kiessling, R., Klein, E., and Wigzell, H. (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5, 112–117.

    Article  CAS  PubMed  Google Scholar 

  3. Trinchieri, G. (1989) Biology of natural killer cells. Adv Immunol 47, 187–376.

    Article  CAS  PubMed  Google Scholar 

  4. Bryceson, Y. T., March, M. E., Ljunggren, H. G., and Long, E. O. (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166.

    Article  CAS  PubMed  Google Scholar 

  5. Lucas, M., Schachterle, W., Oberle, K., Aichele, P., and Diefenbach, A. (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26, 503–517.

    Article  CAS  PubMed  Google Scholar 

  6. Gidlund, M., Orn, A., Wigzell, H., Senik, A., and Gresser, I. (1978) Enhanced NK cell activity in mice injected with interferon and interferon inducers. Nature 273, 759.

    Article  CAS  PubMed  Google Scholar 

  7. Djeu, J., Heinbaugh, J., Holden, H., and Herberman, R. (1979) Augmentation of mouse natural killer cell activity by interferon and interferon inducers. J Immunol 122, 175.

    CAS  PubMed  Google Scholar 

  8. Cudkowicz, G., and Yung, Y. P. (1977) Abrogation of resistance to foreign bone marrow grafts by carrageenans. I. Studies with the anti-macrophage agent seakem carrageenan. J Immunol 119, 483–487.

    CAS  PubMed  Google Scholar 

  9. Djeu, J. Y., Heinbaugh, J. A., Holden, H. T., and Herberman, R. B. (1979) Role of macrophages in the augmentation of mouse natural killer cell activity by poly I:C and interferon. J Immunol 122, 182–188.

    CAS  PubMed  Google Scholar 

  10. Shah, P. D., Gilbertson, S. M., and Rowley, D. A. (1985) Dendritic cells that have interacted with antigen are targets for natural killer cells. J Exp Med 162, 625–636.

    Article  CAS  PubMed  Google Scholar 

  11. Chambers, B. J., Salcedo, M., and Ljunggren, H. G. (1996) Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1). Immunity 5, 311–317.

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez, N. C., Lozier, A., Flament, C., Ricciardi-Castagnoli, P., Bellet, D., Suter, M., Perricaudet, M., Tursz, T., Maraskovsky, E., and Zitvogel, L. (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5, 405–411.

    Article  CAS  PubMed  Google Scholar 

  13. Andrews, D. M., Scalzo, A. A., Yokoyama, W. M., Smyth, M. J., and Degli-Esposti, M. A. (2003) Functional interactions between dendritic cells and NK cells during viral infection. Nat Immunol 4, 175–181.

    Article  CAS  PubMed  Google Scholar 

  14. Granucci, F., Zanoni, I., Pavelka, N., Van Dommelen, S. L., Andoniou, C. E., Belardelli, F., Degli Esposti, M. A., and Ricciardi-Castagnoli, P. (2004) A contribution of mouse dendritic cell-derived IL-2 for NK cell activation. J Exp Med 200, 287–295.

    Article  CAS  PubMed  Google Scholar 

  15. Ferlazzo, G., Pack, M., Thomas, D., Paludan, C., Schmid, D., Strowig, T., Bougras, G., Muller, W. A., Moretta, L., and Munz, C. (2004) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci U S A 101, 16606–16611.

    Article  CAS  PubMed  Google Scholar 

  16. Baratin, M., Roetynck, S., Lepolard, C., Falk, C., Sawadogo, S., Uematsu, S., Akira, S., Ryffel, B., Tiraby, J. G., Alexopoulou, L., Kirschning, C. J., Gysin, J., Vivier, E., and Ugolini, S. (2005) Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proc Natl Acad Sci U S A 102, 14747–14752.

    Article  CAS  PubMed  Google Scholar 

  17. Martin-Fontecha, A., Thomsen, L. L., Brett, S., Gerard, C., Lipp, M., Lanzavecchia, A., and Sallusto, F. (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5, 1260–1265.

    Article  CAS  PubMed  Google Scholar 

  18. Andoniou, C. E., van Dommelen, S. L., Voigt, V., Andrews, D. M., Brizard, G., Asselin-Paturel, C., Delale, T., Stacey, K. J., Trinchieri, G., and Degli-Esposti, M. A. (2005) Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat Immunol 6, 1011–1019.

    Article  CAS  PubMed  Google Scholar 

  19. Van Rooijen, N., and Sanders, A. (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174, 83–93.

    Article  PubMed  Google Scholar 

  20. Saito, M., Iwawaki, T., Taya, C., Yonekawa, H., Noda, M., Inui, Y., Mekada, E., Kimata, Y., Tsuru, A., and Kohno, K. (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19, 746–750.

    Article  CAS  PubMed  Google Scholar 

  21. Kassim, S. H., Rajasagi, N. K., Zhao, X., Chervenak, R., and Jennings, S. R. (2006) In vivo ablation of CD11c-positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T-cell responses. J Virol 80, 3985–3993.

    Article  CAS  PubMed  Google Scholar 

  22. Schleicher, U., Liese, J., Knippertz, I., Kurzmann, C., Hesse, A., Heit, A., Fischer, J. A., Weiss, S., Kalinke, U., Kunz, S., and Bogdan, C. (2007) NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs. J Exp Med 204, 893–906.

    Article  CAS  PubMed  Google Scholar 

  23. Uchida, T., Scumpia, P. O., Murasko, D. M., Seki, S., Woulfe, S., Clare-Salzler, M. J., and Moldawer, L. L. (2007) Variable requirement of dendritic cells for recruitment of NK and T cells to different TLR agonists. J Immunol 178, 3886–3892.

    CAS  PubMed  Google Scholar 

  24. Mortier, E., Woo, T., Advincula, R., Gozalo, S., and Ma, A. (2008) IL-15Ralpha chaperones IL-15 to stable dendritic cell membrane complexes that activate NK cells via trans presentation. J Exp Med 205, 1213–1225.

    Article  CAS  PubMed  Google Scholar 

  25. Hochweller, K., Striegler, J., Hammerling, G. J., and Garbi, N. (2008) A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur J Immunol 38, 2776–2783.

    Article  CAS  PubMed  Google Scholar 

  26. Kang, S. J., Liang, H. E., Reizis, B., and Locksley, R. M. (2008) Regulation of hierarchical clustering and activation of innate immune cells by dendritic cells. Immunity 29, 819–833.

    Article  CAS  PubMed  Google Scholar 

  27. Jung, S., Unutmaz, D., Wong, P., Sano, G., De los Santos, K., Sparwasser, T., Wu, S., Vuthoori, S., Ko, K., Zavala, F., Pamer, E. G., Littman, D. R., and Lang, R. A. (2002) In Vivo Depletion of CD11c+ dendritic cells Abrogates Priming of CD8+ T Cells by Exogenous Cell-Associated Antigens. Immunity 17, 211–220.

    Article  CAS  PubMed  Google Scholar 

  28. Domen, J., Gandy, K. L., and Weissman, I. L. (1998) Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 91, 2272–2282.

    CAS  PubMed  Google Scholar 

  29. Kennedy, M. K., Glaccum, M., Brown, S. N., Butz, E. A., Viney, J. L., Embers, M., Matsuki, N., Charrier, K., Sedger, L., Willis, C. R., Brasel, K., Morrissey, P. J., Stocking, K., Schuh, J. C., Joyce, S., and Peschon, J. J. (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191, 771–780.

    Article  CAS  PubMed  Google Scholar 

  30. Battegay, M., Cooper, S., Althage, A., Banziger, J., Hengartner, H., and Zinkernagel, R. M. (1991) Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J Virol Methods 33, 191–198.

    Article  CAS  PubMed  Google Scholar 

  31. Cikes, M., Friberg, S., Jr., and Klein, G. (1973) Progressive loss of H-2 antigens with concomitant increase of cell-surface antigen(s) determined by Moloney leukemia virus in cultured murine lymphomas. J Natl Cancer Inst 50, 347–362.

    CAS  PubMed  Google Scholar 

  32. Karre, K., Ljunggren, H. G., Piontek, G., and Kiessling, R. (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature 319, 675–678.

    Article  CAS  PubMed  Google Scholar 

  33. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N., and Raulet, D. H. (2000) Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1, 119–126.

    Article  CAS  PubMed  Google Scholar 

  34. Pardo, J., Wallich, R., Ebnet, K., Iden, S., Zentgraf, H., Martin, P., Ekiciler, A., Prins, A., Mullbacher, A., Huber, M., and Simon, M. M. (2007) Granzyme B is expressed in mouse mast cells in vivo and in vitro and causes delayed cell death independent of perforin. Cell Death Differ 14, 1768–1779.

    Article  CAS  PubMed  Google Scholar 

  35. Fehniger, T. A., Cai, S. F., Cao, X., Bredemeyer, A. J., Presti, R. M., French, A. R., and Ley, T. J. (2007) Acquisition of Murine NK cell cytotoxicity requires the translation of a pre-existing pool of Granzyme B and Perforin mRNAs. Immunity 26, 798–811.

    Article  CAS  PubMed  Google Scholar 

  36. Rolink, A., Melchers, F., and Andersson, J. (1996) The SCID but not the RAG-2 gene product is required for S mu-S epsilon heavy chain class switching. Immunity 5, 319–330.

    Article  CAS  PubMed  Google Scholar 

  37. Aichele, P., Zinke, J., Grode, L., Schwendener, R. A., Kaufmann, S. H., and Seiler, P. (2003) Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J Immunol 171, 1148–1155.

    CAS  PubMed  Google Scholar 

  38. Lehmann-Grube, F., Lohler, J., Utermohlen, O., and Gegin, C. (1993) Antiviral immune responses of lymphocytic choriomeningitis virus-infected mice lacking CD8+ T lymphocytes because of disruption of the beta 2-microglobulin gene. J Virol 67, 332–339.

    CAS  PubMed  Google Scholar 

  39. Bennett, C. L. and Clausen, B. E. (2007) DC ablation in mice: promises, pitfalls, and challenges. Trends Immunol 28, 525–531.

    Article  CAS  PubMed  Google Scholar 

  40. Buch, T., Heppner, F. L., Tertilt, C., Heinen, T. J., Kremer, M., Wunderlich, F. T., Jung, S., and Waisman, A. (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2, 419–426.

    Article  CAS  PubMed  Google Scholar 

  41. Voehringer, D., Liang, H. E., and Locksley, R. M. (2008) Homeostasis and effector function of lymphopenia-induced “memory-like” T cells in constitutively T cell-depleted mice. J Immunol 180, 4742–4753.

    CAS  PubMed  Google Scholar 

  42. Zammit, D. J., Cauley, L. S., Pham, Q. M., and Lefrancois, L. (2005) Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22, 561–570.

    Article  CAS  PubMed  Google Scholar 

  43. Probst, H. C., Tschannen, K., Odermatt, B., Schwendener, R., Zinkernagel, R. M., and Van Den Broek, M. (2005) Histological analysis of CD11c-DTR/GFP mice after in vivo depletion of dendritic cells. Clin Exp Immunol 141, 398–404.

    Article  CAS  PubMed  Google Scholar 

  44. van Rijt, L. S., Jung, S., Kleinjan, A., Vos, N., Willart, M., Duez, C., Hoogsteden, H. C., and Lambrecht, B. N. (2005) In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med 201, 981–991.

    Article  PubMed  Google Scholar 

  45. Hebel, K., Griewank, K., Inamine, A., Chang, H. D., Muller-Hilke, B., Fillatreau, S., Manz, R. A., Radbruch, A., and Jung, S. (2006) Plasma cell differentiation in T-independent type 2 immune responses is independent of CD11c(high) dendritic cells. Eur J Immunol 36, 2912–2919.

    Article  CAS  PubMed  Google Scholar 

  46. Zaft, T., Sapoznikov, A., Krauthgamer, R., Littman, D. R., and Jung, S. (2005) CD11chigh dendritic cell ablation impairs lymphopenia-driven proliferation of naive and memory CD8+ T cells. J Immunol 175, 6428–6435.

    CAS  PubMed  Google Scholar 

  47. Bennett, C. L., van Rijn, E., Jung, S., Inaba, K., Steinman, R. M., Kapsenberg, M. L., and Clausen, B. E. (2005) Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 169, 569–576.

    Article  CAS  PubMed  Google Scholar 

  48. Kissenpfennig, A., Henri, S., Dubois, B., Laplace-Builhe, C., Perrin, P., Romani, N., Tripp, C. H., Douillard, P., Leserman, L., Kaiserlian, D., Saeland, S., Davoust, J., and Malissen, B. (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654.

    Article  CAS  PubMed  Google Scholar 

  49. Kaplan, D. H., Jenison, M. C., Saeland, S., Shlomchik, W. D., and Shlomchik, M. J. (2005) Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23, 611–620.

    Article  CAS  PubMed  Google Scholar 

  50. Cailhier, J. F., Partolina, M., Vuthoori, S., Wu, S., Ko, K., Watson, S., Savill, J., Hughes, J., and Lang, R. A. (2005) Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J Immunol 174, 2336–2342.

    CAS  PubMed  Google Scholar 

  51. Duffield, J. S., Forbes, S. J., Constandinou, C. M., Clay, S., Partolina, M., Vuthoori, S., Wu, S., Lang, R., and Iredale, J. P. (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115, 56–65.

    CAS  PubMed  Google Scholar 

  52. Brocker, T., Riedinger, M., and Karjalainen, K. (1997) Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med 185, 541–550.

    Article  CAS  PubMed  Google Scholar 

  53. Laouar, Y., Sutterwala, F. S., Gorelik, L., and Flavell, R. A. (2005) Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 6, 600–607.

    Article  CAS  PubMed  Google Scholar 

  54. Caton, M. L., Smith-Raska, M. R., and Reizis, B. (2007) Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med 204, 1653–1664.

    CAS  PubMed  Google Scholar 

  55. Lodolce, J. P., Boone, D. L., Chai, S., Swain, R. E., Dassopoulos, T., Trettin, S., and Ma, A. (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676.

    Article  CAS  PubMed  Google Scholar 

  56. Cooper, M. A., Bush, J. E., Fehniger, T. A., VanDeusen, J. B., Waite, R. E., Liu, Y., Aguila, H. L., and Caligiuri, M. A. (2002) In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100, 3633–3638.

    Article  CAS  PubMed  Google Scholar 

  57. Walzer, T., Blery, M., Chaix, J., Fuseri, N., Chasson, L., Robbins, S. H., Jaeger, S., Andre, P., Gauthier, L., Daniel, L., Chemin, K., Morel, Y., Dalod, M., Imbert, J., Pierres, M., Moretta, A., Romagne, F., and Vivier, E. (2007) Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci U S A 104, 3384–3389.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lucas, M., Vonarbourg, C., Aichele, P., Diefenbach, A. (2010). Studying NK Cell/Dendritic Cell Interactions. In: Campbell, K. (eds) Natural Killer Cell Protocols. Methods in Molecular Biology, vol 612. Humana Press. https://doi.org/10.1007/978-1-60761-362-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-362-6_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-361-9

  • Online ISBN: 978-1-60761-362-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics