Skip to main content

A Model System for Studying NK Cell Receptor Signaling

  • Protocol
  • First Online:
  • 5068 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 612))

Abstract

Study of NK cell receptor signaling in mouse NK cells has been difficult since there are no clones of murine NK cells. We describe here a model system that overcomes this problem. This system allows the study of many aspects of NK cell receptor function with complete control over the variables that may affect activity such as cis versus trans ligand engagement, homotypic interactions, multiple target types, receptor number, receptor-ligand affinity, and signaling adaptor molecule expression. Although we give examples only for 2B4, Ly49C, and CD48, any NK cell receptors could be studied using these methods. Since many NK cell receptors such as 2B4, CD48, and the Ly49 family can be expressed in T cells, this model system allows the study of not only NK cells but also T cells with NK cell receptors. A standardized system for determining the regulation of NK cell receptor signaling can be important for understanding the anti-tumor activities of NK cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Trinchieri, G. (1989) Biology of natural killer cells. Adv Immunol 47, 187–376.

    Article  CAS  PubMed  Google Scholar 

  2. Lanier, L. L. (2003) Natural killer cell receptor signaling. Curr Opin Immunol 15, 308–314.

    Article  CAS  PubMed  Google Scholar 

  3. Lanier, L. L., Corliss, B. C., Wu, J., Leong, C., and Phillips, J. H. (1998) Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707.

    Article  CAS  PubMed  Google Scholar 

  4. Smith, K. M., Wu, J., Bakker, A. B., Phillips, J. H., and Lanier, L. L. (1998) Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. J Immunol 161, 7–10.

    CAS  PubMed  Google Scholar 

  5. Lanier, L. L., Corliss, B., Wu, J., and Phillips, J. H. (1998) Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8, 693–701.

    Article  CAS  PubMed  Google Scholar 

  6. McVicar, D. W., Taylor, L. S., Gosselin, P., Willette-Brown, J., Mikhael, A. I., Geahlen, R. L., Nakamura, M. C., Linnemeyer, P., Seaman, W. E., Anderson, S. K., Ortaldo, J. R., and Mason, L. H. (1998) DAP12-mediated signal transduction in natural killer cells. A dominant role for the Syk protein-tyrosine kinase. J Biol Chem 273, 32934–32942.

    Article  CAS  PubMed  Google Scholar 

  7. Campbell, K. S., and Colonna, M. (1999) DAP12: a key accessory protein for relaying signals by natural killer cell receptors. Int J Biochem Cell Biol 31, 631–636.

    Article  CAS  PubMed  Google Scholar 

  8. Gosselin, P., Mason, L. H., Willette-Brown, J., Ortaldo, J. R., McVicar, D. W., and Anderson, S. K. (1999) Induction of DAP12 phosphorylation, calcium mobilization, and cytokine secretion by Ly49H. J Leukoc Biol 66, 165–171.

    CAS  PubMed  Google Scholar 

  9. Wu, J., Cherwinski, H., Spies, T., Phillips, J. H., and Lanier, L. L. (2000) DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells. J Exp Med 192, 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  10. Lowin-Kropf, B., Kunz, B., Schneider, P., and Held, W. (2002) A role for the src family kinase Fyn in NK cell activation and the formation of the repertoire of Ly49 receptors. Eur J Immunol 32, 773–782.

    Article  CAS  PubMed  Google Scholar 

  11. Gadue, P., Morton, N., and Stein, P. L. (1999) The Src family tyrosine kinase Fyn regulates natural killer T cell development. J Exp Med 190, 1189–1196.

    Article  CAS  PubMed  Google Scholar 

  12. Marti, F., Xu, C. W., Selvakumar, A., Brent, R., Dupont, B., and King, P. D. (1998) LCK-phosphorylated human killer cell-inhibitory receptors recruit and activate phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 95, 11810–11815.

    Article  CAS  PubMed  Google Scholar 

  13. Brumbaugh, K. M., Binstadt, B. A., Billadeau, D. D., Schoon, R. A., Dick, C. J., Ten, R. M., and Leibson, P. J. (1997) Functional role for Syk tyrosine kinase in natural killer cell-mediated natural cytotoxicity. J Exp Med 186, 1965–1974.

    Article  CAS  PubMed  Google Scholar 

  14. Adunyah, S. E., Wheeler, B. J., and Cooper, R. S. (1997) Evidence for the involvement of LCK and MAP kinase (ERK-1) in the signal transduction mechanism of interleukin-15. Biochem Biophys Res Commun 232, 754–758.

    Article  CAS  PubMed  Google Scholar 

  15. Binstadt, B. A., Brumbaugh, K. M., Dick, C. J., Scharenberg, A. M., Williams, B. L., Colonna, M., Lanier, L. L., Kinet, J. P., Abraham, R. T., and Leibson, P. J. (1996) Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity 5, 629–638.

    Article  CAS  PubMed  Google Scholar 

  16. Binstadt, B. A., Billadeau, D. D., Jevremovic, D., Williams, B. L., Fang, N., Yi, T., Koretzky, G. A., Abraham, R. T., and Leibson, P. J. (1998) SLP-76 is a direct substrate of SHP-1 recruited to killer cell inhibitory receptors. J Biol Chem 273, 27518–27523.

    Article  CAS  PubMed  Google Scholar 

  17. Tangye, S. G., Lazetic, S., Woollatt, E., Sutherland, G. R., Lanier, L. L., and Phillips, J. H. (1999) Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J Immunol 162, 6981–6985.

    CAS  PubMed  Google Scholar 

  18. Letourneur F. M. B. (1989) Derivation of a T cell hybridoma variant deprived of functional T cell receptor alpha and beta chain transcripts reveals a nonfunctional alpha-mRNA of BW5147 origin. Eur J Immunol 12, 2269–2274.

    Article  Google Scholar 

  19. McMahon, C. W., and Raulet, D. H. (2001) Expression and function of NK cell receptors in CD8+ T cells. Curr Opin Immunol 13, 465–470.

    Article  CAS  PubMed  Google Scholar 

  20. Ugolini, S., and Vivier, E. (2000) Regulation of T cell function by NK cell receptors for classical MHC class I molecules. Curr Opin Immunol 12, 295–300.

    Article  CAS  PubMed  Google Scholar 

  21. Holler, P. D., Chlewicki, L. K., and Kranz, D. M. (2003) TCRs with high affinity for foreign pMHC show self-reactivity. Nat Immunol 4, 55–62.

    Article  CAS  PubMed  Google Scholar 

  22. Holler, P. D. and Kranz, D. M. (2003) Quantitative Analysis of the Contribution of TCR/pepMHC Affinity and CD8 to T Cell Activation. Immunity 18, 255–264.

    Article  CAS  PubMed  Google Scholar 

  23. Holler, P. D., Lim, A. R., Cho, B. K., Rund, L. A., and Kranz, D. M. (2001) CD8(-) T cell transfectants that express a high affinity T cell receptor exhibit enhanced peptide-dependent activation. J Exp Med 194, 1043–1052.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, N., Morra, M., Wu, C., Gullo, C., Howie, D., Coyle, T., Engel, P., and Terhorst, C. (2001) CD150 is a member of a family of genes that encode glycoproteins on the surface of hematopoietic cells. Immunogenetics 53, 382–394.

    Article  CAS  PubMed  Google Scholar 

  25. Engel, P., Eck, M. J., and Terhorst, C. (2003) The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol 3, 813–821.

    Article  CAS  PubMed  Google Scholar 

  26. Sidorenko, S. P., and Clark, E. A. (2003) The dual-function CD150 receptor subfamily: the viral attraction. Nat Immunol 4, 19–24.

    Article  CAS  PubMed  Google Scholar 

  27. Morita, S., Kojima, T., and Kitamura, T. (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7, 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  28. Udaka, K., Wiesmuller, K. H., Kienle, S., Jung, G., and Walden, P. (1996) Self-MHC-restricted peptides recognized by an alloreactive T lymphocyte clone. J Immunol 157, 670–678.

    CAS  PubMed  Google Scholar 

  29. Latchman, Y., McKay, P. F., and Reiser, H. (1998) Identification of the 2B4 molecule as a counter-receptor for CD48. J Immunol 161, 5809–5812.

    CAS  PubMed  Google Scholar 

  30. Brown, M. H., Boles, K., van der Merwe, P. A., Kumar, V., Mathew, P. A., and Barclay, A. N. (1998) 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48. J Exp Med 188, 2083–2090.

    Article  CAS  PubMed  Google Scholar 

  31. Degano, M., Garcia, K. C., Apostolopoulos, V., Rudolph, M. G., Teyton, L., and Wilson, I. A. (2000) A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251–261.

    Article  CAS  PubMed  Google Scholar 

  32. Dam, J., Guan, R., Natarajan, K., Dimasi, N., Chlewicki, L. K., Kranz, D. M., Schuck, P., Margulies, D. H., and Mariuzza, R. A. (2003) Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2 K(b). Nat Immunol 4, 1213–1222.

    Article  CAS  PubMed  Google Scholar 

  33. Chlewicki, L. K., Velikovsky, C. A., Balakrishnan, V., Mariuzza, R. A., and Kumar, V. (2008) Molecular basis of the dual functions of 2B4 (CD244). J Immunol 180, 8159–8167.

    CAS  PubMed  Google Scholar 

  34. Clarkson, N. G., Simmonds, S. J., Puklavec, M. J., and Brown, M. H. (2007) Direct and indirect interactions of the cytoplasmic region of CD244 (2B4) in mice and humans with FYN kinase. J Biol Chem 282, 25385–25394.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chlewicki, L.K., Kumar, V. (2010). A Model System for Studying NK Cell Receptor Signaling. In: Campbell, K. (eds) Natural Killer Cell Protocols. Methods in Molecular Biology, vol 612. Humana Press. https://doi.org/10.1007/978-1-60761-362-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-362-6_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-361-9

  • Online ISBN: 978-1-60761-362-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics