Membrane Protein Expression in Lactococcus lactis

  • Annie Frelet-BarrandEmail author
  • Sylvain Boutigny
  • Edmund R. S. Kunji
  • Norbert Rolland
Part of the Methods in Molecular Biology™ book series (MIMB, volume 601)


Membrane proteins play key roles in cellular physiology, and they are important drug targets. Approximately 25% of all genes identified in sequenced genomes are known to encode membrane proteins; however, the majority have no assigned function. Although the resolution of soluble protein structure has entered the high-throughput stage, only 100 high-resolution structures of membrane proteins have been described until now. Lactococcus lactis is a gram-positive lactic bacterium that has been used traditionally in food fermentations, but it is now used widely in biotechnology for large-scale overproduction of heterologously expressed proteins. Various expression vectors based on either constitutive or inducible promoters exist. The nisin-inducible controlled gene expression (NICE) system is the most suitable for recombinant membrane protein expression allowing for fine control of gene expression based on the autoregulation mechanism of the bacteriocin nisin. Recombinant membrane proteins can be produced with affinity tags for efficient detection and purification from crude membrane protein extracts. The purpose of this chapter is to provide a detailed protocol for the expression of membrane proteins and their detection using the Strep-tag II affinity tag in L. lactis.

Key words

Cell disruptor French press Lactococcus lactis membrane proteins Strep-tag II 



This work has been supported by the Commissariat à l’Energie Atomique (CEA-PM project, A.F., S.B., and N.R.). We thank Shaun Peters and Daphné Seigneurin-Berny for critical reading of the manuscript. We thank Igor Mierau (NIZO, The Netherlands) for kindly allowing us to illustrate this chapter with the figure on the NICE system.


  1. 1.
    Gasson MJ, de Vos WM (eds) (1994) Genetics and biotechnology of lactic acid bacteria. Blackie Academic and Professional, LondonGoogle Scholar
  2. 2.
    Wood BJB, Warner PJ (eds) (2003) Genetics of lactic acid bacteria. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  3. 3.
    Teuber M, Geis A (2006) The genus Lactococcus. In: Dworkin M et al. (eds) The Prokaryotes, vol 4. Springer Verlag, New York, pp 205–228Google Scholar
  4. 4.
    Morello E, Bermúdez-Humarán LG, Llull D, Solé V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14:48–58CrossRefPubMedGoogle Scholar
  5. 5.
    Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM (1999) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol 17:588–592CrossRefPubMedGoogle Scholar
  6. 6.
    Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, de Vos WM, Hols P (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66:4112–4114CrossRefPubMedGoogle Scholar
  7. 7.
    Hugenholtz J, Sybesma W, Groot MN, Wisselink W, Ladero V, Burgess K, van Sinderen D, Piard JC, Eggink G, Smid EJ, Savoy G, Sesma F, Jansen T, Hols P, Kleerebezem M (2002) Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82:217–235CrossRefPubMedGoogle Scholar
  8. 8.
    Nouaille S, Ribeiro LA, Miyoshi A, Pontes D, Le Loir Y, Oliveira SC, Langella P, Azevedo V (2003) Heterologous protein production and delivery systems for Lactococcus lactis. Genet Mol Res 2:102–111PubMedGoogle Scholar
  9. 9.
    Hanniffy S, Wiedermann U, Repa A, Mercenier A, Daniel C, Fioramonti J, Tlaskolova H, Kozakova H, Israelsen H, Madsen S, Vrang A, Hols P, Delcour J, Bron P, Kleerebezem M, Wells J (2004) Potential and opportunities for use of recombinant lactic acid bacteria in human health. Adv Appl Microbiol 56:1–64CrossRefPubMedGoogle Scholar
  10. 10.
    Leroy F, Devuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78CrossRefGoogle Scholar
  11. 11.
    Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermùdez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4:2CrossRefPubMedGoogle Scholar
  12. 12.
    Mierau I, Leij P, van Swam I, Blommestein B, Floris E, Mond J, Smid EJ (2005) Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin controlled gene expression system NICE: the case of lysostaphin. Microb Cell Fact 4:15CrossRefPubMedGoogle Scholar
  13. 13.
    Mierau I, Olieman K, Mond J, Smid EJ (2005) Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Fact 4:16CrossRefPubMedGoogle Scholar
  14. 14.
    Mierau I, Kleerebeem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou XX, Li WF, Ma GX, Pan YJ (2006) The nisin-controlled gene expression system: construction, application and improvements. Biotechnol Adv 24:285–295CrossRefPubMedGoogle Scholar
  16. 16.
    Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6:349–362CrossRefPubMedGoogle Scholar
  17. 17.
    Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21CrossRefGoogle Scholar
  18. 18.
    Kuipers OP, Beerthuyzen MM, Siezen RJ, de Vos WM (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216:281–291CrossRefPubMedGoogle Scholar
  19. 19.
    de Ruyter PG, Kuipers OP, Beerthuyzen MM, Alen-Boerrigter I, de Vos WM (1996) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178:3434–3439PubMedGoogle Scholar
  20. 20.
    de Ruyter PG, Kuipers OP, de Vos WM (1996) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667PubMedGoogle Scholar
  21. 21.
    Kunji ERS, Slotboom DJ, Poolman B (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 1610:97–108CrossRefPubMedGoogle Scholar
  22. 22.
    Kunji ERS, Chan KW, Slotboom DJ, Floyd S, O’Connor R, Monné M (2005) Eukaryotic membrane protein overproduction in Lactococcus lactis. Curr Opin Biotechnol 16:546–551CrossRefPubMedGoogle Scholar
  23. 23.
    Monné M, Chan KW, Slotboom DJ, Kunji ERS (2005) Functional expression of eukaryotic membrane proteins in Lactococcus lactis. Protein Sci 14:3048–3056CrossRefPubMedGoogle Scholar
  24. 24.
    Lichty JJ, Malecki JL, Agnew HD, Michelson-Horowitz DJ, Tan S (2005) Comparison of affinity tags for protein purification. Protein Exp Purif 41:98–105CrossRefGoogle Scholar
  25. 25.
    Rahman M, Ismat F, McPherson MJJ, Baldwin SA (2007) Topology-informed strategies for the overexpression of membrane proteins. Mol Memb Biol 24:407–418CrossRefGoogle Scholar
  26. 26.
    Schmidt TG, Skerra A (2007) The Strep-Tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535CrossRefPubMedGoogle Scholar
  27. 27.
    Roberts SA, Wildner GF, Grass G, Weichsel A, Ambrus A, Rensing C, Montfort WR (2003) A labile regulatory copper ion lies near the T1 copper site in the multicopper oxidase CueO. J Biol Chem 278:31958–31963CrossRefPubMedGoogle Scholar
  28. 28.
    Korndorfer IP, Schlehuber S, Skerra A (2003) Structural mechanism of specific ligand recognition by a lipocalin tailored for the complexation of digoxigenin. J Mol Biol 330:385–396CrossRefPubMedGoogle Scholar
  29. 29.
    Korndorfer IP, Dommel MK, Skerra A (2004) Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. Nat Struct Mol Biol 11:1015–1020CrossRefPubMedGoogle Scholar
  30. 30.
    Breustedt DA, Korndorfer IP, Redl B, Skerra A (2005) The 1.8-Å crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. J Biol Chem 280:484–493PubMedGoogle Scholar
  31. 31.
    Tang J, Ebner A, Ilk N, Lichtblau H, Huber C, Zhu R, Pum D, Leitner M, Pastushenko V, Gruber HJ, Sleytr UB, Hinterdorfer P (2008) High-affinity tags fused to s-layer proteins probed by atomic force microscopy. Langmuir 24:1324–1329CrossRefPubMedGoogle Scholar
  32. 32.
    Nguyen HD, Phuong Phan TT, Schumann W (2007) Expression vectors for the rapid purification of recombinant proteins in Bacillus subtilis. Curr Microbiol 55:89–93CrossRefPubMedGoogle Scholar
  33. 33.
    Poolman B, Doeven MK, Geertsma ER, Biemans-Oldehinkel E, Konings WN, Rees DC (2005) Functional analysis of detergent-solubilized and membrane-reconstituted ABC Transporters. Meth Enzymol 400: 429–459Google Scholar
  34. 34.
    Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813PubMedGoogle Scholar
  35. 35.
    Geertsma ER, Poolman B (2007) High-throughput cloning and expression in recalcitrant bacteria. Nat Methods 4:705–707CrossRefPubMedGoogle Scholar
  36. 36.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  37. 37.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bonding. Anal Biochem 72: 248–254CrossRefPubMedGoogle Scholar
  38. 38.
    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefPubMedGoogle Scholar
  39. 39.
    Chua NH (1980) Electrophoretic analysis of chloroplast proteins. Methods Enzymol 69:434–436CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Annie Frelet-Barrand
    • 1
    Email author
  • Sylvain Boutigny
    • 2
    • 3
    • 4
    • 5
  • Edmund R. S. Kunji
    • 6
  • Norbert Rolland
    • 3
    • 4
    • 5
    • 7
  1. 1.Laboratoire de Physiologie Cellulaire Végétale, CNRS (UMR-5168)/CEA/INRA (UMR-1200), Université Joseph Fourier, iRTSVCEA-GrenobleFrance
  2. 2.Laboratoire de Physiologie Cellulaire VégétaleGrenobleFrance
  3. 3.CEA, DSV, iRTSVGrenobleFrance
  4. 4.INRAGrenobleFrance
  5. 5.Université Joseph FourierGrenobleFrance
  6. 6.The Medical Research Council, Dunn Human Nutrition UnitCambridgeUK
  7. 7.Laboratoire de Physiologie Cellulaire Végétale, CNRSGrenobleFrance

Personalised recommendations