Skip to main content

Expression of Membrane Proteins at the Escherichia coli Membrane for Structural Studies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 601))

Abstract

Structural biology of membrane proteins is often limited by the first steps in obtaining sufficient yields of proteins because native sources are seldom. Heterologous systems like bacteria are then commonly employed for membrane protein over-expression. Escherichia coli is the main bacterial host used. However, overproduction of a foreign membrane protein at a non-physiological level is usually toxic for cells or leads to inclusion body formation. Those effects can be reduced by optimizing the cell growth conditions, choosing the suitable bacterial strain and expression vector, and finally co-expressing the target protein and the b-subunit of E. coli adenosine triphosphate (ATP)-synthase, which triggers the proliferation of intracytoplasmic membranes. This chapter is devoted to help the experimenter in choosing the appropriate plasmid/bacterial host combination for optimizing the amount of the target membrane protein produced in its correct folded state.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. White SH (2004) The progress of membrane protein structure determination. Protein Sci 13:1948–1949

    Article  CAS  PubMed  Google Scholar 

  2. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  CAS  PubMed  Google Scholar 

  3. Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase. FEBS Lett 482:215–219

    Article  CAS  PubMed  Google Scholar 

  4. Lundberg U, Kaberdin V, von Gabain A (1999) The mechanism of mRNA degradation in bacteria and their implication for stabilization of heterologous transcripts. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology. ASM Press, Washington, DC, pp 585–596

    Google Scholar 

  5. Schoepfer R (1993) The pRSET family of T7 promoter expression vectors for Escherichia coli. Gene 124:83–85

    Article  CAS  PubMed  Google Scholar 

  6. Hiszczynska-Sawicka E, Kur J (1997) Effect of Escherichia coli IHF mutations on plasmid p15A copy number. Plasmid 38:174–179

    Article  CAS  PubMed  Google Scholar 

  7. Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO, de Gier JW (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105:14371–14376

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H, Wu H (2007) A novel high-copy plasmid, pEC, compatible with commonly used Escherichia coli cloning and expression vectors. Biotechnol Lett 29:431–437

    Article  CAS  PubMed  Google Scholar 

  9. Peterson J, Phillips GJ (2008) New pSC101-derivative cloning vectors with elevated copy numbers. Plasmid 59:193–201

    Article  CAS  PubMed  Google Scholar 

  10. Way M, Pope B, Gooch J, Hawkins M, Weeds AG (1990) Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J 9:4103–4109

    CAS  PubMed  Google Scholar 

  11. Lopez PJ, Marchand I, Joyce SA, Dreyfus M (1999) The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol Microbiol 33:188–199

    Article  CAS  PubMed  Google Scholar 

  12. Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177:1497–1504

    CAS  PubMed  Google Scholar 

  13. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  14. Walker JE, Miroux B (1999) Selection of Escherichia coli host that are optimized for the overexpression of proteins. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology. ASM Press, Washington, DC, pp 575–584

    Google Scholar 

  15. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  16. Shaw AZ, Miroux B (2003) A general approach for heterologous membrane protein expression in Escherichia coli: the uncoupling protein, UCP1, as an example. Methods Mol Biol 228:23–35

    CAS  PubMed  Google Scholar 

  17. Arechaga I, Miroux B, Runswick MJ, Walker JE (2003) Over-expression of Escherichia coli F1F(o)-ATPase subunit a is inhibited by instability of the uncB gene transcript. FEBS Lett 547:97–100

    Article  CAS  PubMed  Google Scholar 

  18. Serrano-Vega MJ, Magnani F, Shibata Y, Tate CG (2008) Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci U S A 105:877–882

    Article  CAS  PubMed  Google Scholar 

  19. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  CAS  PubMed  Google Scholar 

  20. Arditti RR, Scaife JG, Beckwith JR (1968) The nature of mutants in the lac promoter region. J Mol Biol 38:421–426

    Article  CAS  PubMed  Google Scholar 

  21. de Boer HA, Comstock LJ, Vasser M (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A 80:21–25

    Article  PubMed  Google Scholar 

  22. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  CAS  PubMed  Google Scholar 

  23. Aris A, Corchero JL, Benito A, Carbonell X, Viaplana E, Villaverde A (1998) The expression of recombinant genes from bacteriophage lambda strong promoters triggers the SOS response in Escherichia coli. Biotechnol Bioeng 60:551–559

    Article  CAS  PubMed  Google Scholar 

  24. Benito A, Viaplana E, Corchero JL, Carbonell X, Villaverde A (1995) A recombinant foot-and-mouth disease virus antigen inhibits DNA replication and triggers the SOS response in Escherichia coli. FEMS Microbiol Lett 129:157–162

    CAS  PubMed  Google Scholar 

  25. Laity JH, Shimotakahara S, Scheraga HA (1993) Expression of wild-type and mutant bovine pancreatic ribonuclease A in Escherichia coli. Proc Natl Acad Sci U S A 90:615–619

    Article  CAS  PubMed  Google Scholar 

  26. Bedouelle H, Guez V, Vidal-Cros A, Hermann M (1990) Overproduction of tyrosyl-tRNA synthetase is toxic to Escherichia coli: a genetic analysis. J Bacteriol 172:3940–3945

    CAS  PubMed  Google Scholar 

  27. Sisk WP, Bradley JD, Kingsley D, Patterson TA (1992) Deletion of hydrophobic domains of viral glycoproteins increases the level of their production in Escherichia coli. Gene 112:157–162

    Article  CAS  PubMed  Google Scholar 

  28. Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244

    Article  CAS  PubMed  Google Scholar 

  29. Liu T, Chen JY, Zheng Z, Wang TH, Chen GQ (2005) Construction of highly efficient E. coli expression systems containing low oxygen induced promoter and partition region. Appl Microbiol Biotechnol 68:346–354

    Article  CAS  PubMed  Google Scholar 

  30. Cronan JE (2006) A family of arabinose-inducible Escherichia coli expression vectors having pBR322 copy control. Plasmid 55:152–157

    Article  CAS  PubMed  Google Scholar 

  31. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    CAS  PubMed  Google Scholar 

  32. Giacalone MJ, Gentile AM, Lovitt BT, Berkley NL, Gunderson CW, Surber MW (2006) Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system. Biotechniques 40:355–364

    Article  CAS  PubMed  Google Scholar 

  33. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  PubMed  Google Scholar 

  34. Lama J, Carrasco L (1992) Inducible expression of a toxic poliovirus membrane protein in Escherichia coli: comparative studies using different expression systems based on T7 promoters. Biochem Biophys Res Commun 188:972–981

    Article  CAS  PubMed  Google Scholar 

  35. Wood WB (1966) Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J Mol Biol 16:118–133

    Article  CAS  PubMed  Google Scholar 

  36. Leahy DJ, Hendrickson WA, Aukhil I, Erickson HP (1992) Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258:987–991

    Article  CAS  PubMed  Google Scholar 

  37. Phillips TA, VanBogelen RA, Neidhardt FC (1984) lon gene product of Escherichia coli is a heat-shock protein. J Bacteriol 159:283–287

    CAS  PubMed  Google Scholar 

  38. Zhao JB, Wei DZ, Tong WY (2007) Identification of Escherichia coli host cell for high plasmid stability and improved production of antihuman ovarian carcinoma x antihuman CD3 single-chain bispecific antibody. Appl Microbiol Biotechnol 76:795–800

    Article  CAS  PubMed  Google Scholar 

  39. Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667

    Article  CAS  PubMed  Google Scholar 

  40. Studier FW (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44

    Article  CAS  PubMed  Google Scholar 

  41. Reichel C, Brugger R, Bang H, Geisslinger G, Brune K (1997) Molecular cloning and expression of a 2-arylpropionyl-coenzyme A epimerase: a key enzyme in the inversion metabolism of ibuprofen. Mol Pharmacol 51:576–582

    CAS  PubMed  Google Scholar 

  42. Gupta SK, Sharma M, Behera AK, Bisht R, Kaul R (1997) Sequence of complementary deoxyribonucleic acid encoding bonnet monkey (Macaca radiata) zona pellucida glycoprotein-ZP1 and its high-level expression in Escherichia coli. Biol Reprod 57:532–538

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by INSERM, CNRS and the “Agence Nationale de la Recherche” (grant 05-JCJC-0092-01 to B.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Miroux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zoonens, M., Miroux, B. (2010). Expression of Membrane Proteins at the Escherichia coli Membrane for Structural Studies. In: Mus-Veteau, I. (eds) Heterologous Expression of Membrane Proteins. Methods in Molecular Biology™, vol 601. Humana Press. https://doi.org/10.1007/978-1-60761-344-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-344-2_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-343-5

  • Online ISBN: 978-1-60761-344-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics