Expression of Membrane Proteins at the Escherichia coli Membrane for Structural Studies

  • Manuela Zoonens
  • Bruno MirouxEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 601)


Structural biology of membrane proteins is often limited by the first steps in obtaining sufficient yields of proteins because native sources are seldom. Heterologous systems like bacteria are then commonly employed for membrane protein over-expression. Escherichia coli is the main bacterial host used. However, overproduction of a foreign membrane protein at a non-physiological level is usually toxic for cells or leads to inclusion body formation. Those effects can be reduced by optimizing the cell growth conditions, choosing the suitable bacterial strain and expression vector, and finally co-expressing the target protein and the b-subunit of E. coli adenosine triphosphate (ATP)-synthase, which triggers the proliferation of intracytoplasmic membranes. This chapter is devoted to help the experimenter in choosing the appropriate plasmid/bacterial host combination for optimizing the amount of the target membrane protein produced in its correct folded state.

Key words

Bacterial mutant b-subunit of F-ATPase co-expression internal membrane 



This work was supported by INSERM, CNRS and the “Agence Nationale de la Recherche” (grant 05-JCJC-0092-01 to B.M.).


  1. 1.
    White SH (2004) The progress of membrane protein structure determination. Protein Sci 13:1948–1949CrossRefPubMedGoogle Scholar
  2. 2.
    Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298CrossRefPubMedGoogle Scholar
  3. 3.
    Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase. FEBS Lett 482:215–219CrossRefPubMedGoogle Scholar
  4. 4.
    Lundberg U, Kaberdin V, von Gabain A (1999) The mechanism of mRNA degradation in bacteria and their implication for stabilization of heterologous transcripts. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology. ASM Press, Washington, DC, pp 585–596Google Scholar
  5. 5.
    Schoepfer R (1993) The pRSET family of T7 promoter expression vectors for Escherichia coli. Gene 124:83–85CrossRefPubMedGoogle Scholar
  6. 6.
    Hiszczynska-Sawicka E, Kur J (1997) Effect of Escherichia coli IHF mutations on plasmid p15A copy number. Plasmid 38:174–179CrossRefPubMedGoogle Scholar
  7. 7.
    Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO, de Gier JW (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105:14371–14376CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang H, Wu H (2007) A novel high-copy plasmid, pEC, compatible with commonly used Escherichia coli cloning and expression vectors. Biotechnol Lett 29:431–437CrossRefPubMedGoogle Scholar
  9. 9.
    Peterson J, Phillips GJ (2008) New pSC101-derivative cloning vectors with elevated copy numbers. Plasmid 59:193–201CrossRefPubMedGoogle Scholar
  10. 10.
    Way M, Pope B, Gooch J, Hawkins M, Weeds AG (1990) Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J 9:4103–4109PubMedGoogle Scholar
  11. 11.
    Lopez PJ, Marchand I, Joyce SA, Dreyfus M (1999) The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol Microbiol 33:188–199CrossRefPubMedGoogle Scholar
  12. 12.
    Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177:1497–1504PubMedGoogle Scholar
  13. 13.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  14. 14.
    Walker JE, Miroux B (1999) Selection of Escherichia coli host that are optimized for the overexpression of proteins. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology. ASM Press, Washington, DC, pp 575–584Google Scholar
  15. 15.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805CrossRefPubMedGoogle Scholar
  16. 16.
    Shaw AZ, Miroux B (2003) A general approach for heterologous membrane protein expression in Escherichia coli: the uncoupling protein, UCP1, as an example. Methods Mol Biol 228:23–35PubMedGoogle Scholar
  17. 17.
    Arechaga I, Miroux B, Runswick MJ, Walker JE (2003) Over-expression of Escherichia coli F1F(o)-ATPase subunit a is inhibited by instability of the uncB gene transcript. FEBS Lett 547:97–100CrossRefPubMedGoogle Scholar
  18. 18.
    Serrano-Vega MJ, Magnani F, Shibata Y, Tate CG (2008) Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci U S A 105:877–882CrossRefPubMedGoogle Scholar
  19. 19.
    Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491CrossRefPubMedGoogle Scholar
  20. 20.
    Arditti RR, Scaife JG, Beckwith JR (1968) The nature of mutants in the lac promoter region. J Mol Biol 38:421–426CrossRefPubMedGoogle Scholar
  21. 21.
    de Boer HA, Comstock LJ, Vasser M (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A 80:21–25CrossRefPubMedGoogle Scholar
  22. 22.
    Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89CrossRefPubMedGoogle Scholar
  23. 23.
    Aris A, Corchero JL, Benito A, Carbonell X, Viaplana E, Villaverde A (1998) The expression of recombinant genes from bacteriophage lambda strong promoters triggers the SOS response in Escherichia coli. Biotechnol Bioeng 60:551–559CrossRefPubMedGoogle Scholar
  24. 24.
    Benito A, Viaplana E, Corchero JL, Carbonell X, Villaverde A (1995) A recombinant foot-and-mouth disease virus antigen inhibits DNA replication and triggers the SOS response in Escherichia coli. FEMS Microbiol Lett 129:157–162PubMedGoogle Scholar
  25. 25.
    Laity JH, Shimotakahara S, Scheraga HA (1993) Expression of wild-type and mutant bovine pancreatic ribonuclease A in Escherichia coli. Proc Natl Acad Sci U S A 90:615–619CrossRefPubMedGoogle Scholar
  26. 26.
    Bedouelle H, Guez V, Vidal-Cros A, Hermann M (1990) Overproduction of tyrosyl-tRNA synthetase is toxic to Escherichia coli: a genetic analysis. J Bacteriol 172:3940–3945PubMedGoogle Scholar
  27. 27.
    Sisk WP, Bradley JD, Kingsley D, Patterson TA (1992) Deletion of hydrophobic domains of viral glycoproteins increases the level of their production in Escherichia coli. Gene 112:157–162CrossRefPubMedGoogle Scholar
  28. 28.
    Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244CrossRefPubMedGoogle Scholar
  29. 29.
    Liu T, Chen JY, Zheng Z, Wang TH, Chen GQ (2005) Construction of highly efficient E. coli expression systems containing low oxygen induced promoter and partition region. Appl Microbiol Biotechnol 68:346–354CrossRefPubMedGoogle Scholar
  30. 30.
    Cronan JE (2006) A family of arabinose-inducible Escherichia coli expression vectors having pBR322 copy control. Plasmid 55:152–157CrossRefPubMedGoogle Scholar
  31. 31.
    Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130PubMedGoogle Scholar
  32. 32.
    Giacalone MJ, Gentile AM, Lovitt BT, Berkley NL, Gunderson CW, Surber MW (2006) Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system. Biotechniques 40:355–364CrossRefPubMedGoogle Scholar
  33. 33.
    Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130CrossRefPubMedGoogle Scholar
  34. 34.
    Lama J, Carrasco L (1992) Inducible expression of a toxic poliovirus membrane protein in Escherichia coli: comparative studies using different expression systems based on T7 promoters. Biochem Biophys Res Commun 188:972–981CrossRefPubMedGoogle Scholar
  35. 35.
    Wood WB (1966) Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J Mol Biol 16:118–133CrossRefPubMedGoogle Scholar
  36. 36.
    Leahy DJ, Hendrickson WA, Aukhil I, Erickson HP (1992) Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258:987–991CrossRefPubMedGoogle Scholar
  37. 37.
    Phillips TA, VanBogelen RA, Neidhardt FC (1984) lon gene product of Escherichia coli is a heat-shock protein. J Bacteriol 159:283–287PubMedGoogle Scholar
  38. 38.
    Zhao JB, Wei DZ, Tong WY (2007) Identification of Escherichia coli host cell for high plasmid stability and improved production of antihuman ovarian carcinoma x antihuman CD3 single-chain bispecific antibody. Appl Microbiol Biotechnol 76:795–800CrossRefPubMedGoogle Scholar
  39. 39.
    Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667CrossRefPubMedGoogle Scholar
  40. 40.
    Studier FW (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44CrossRefPubMedGoogle Scholar
  41. 41.
    Reichel C, Brugger R, Bang H, Geisslinger G, Brune K (1997) Molecular cloning and expression of a 2-arylpropionyl-coenzyme A epimerase: a key enzyme in the inversion metabolism of ibuprofen. Mol Pharmacol 51:576–582PubMedGoogle Scholar
  42. 42.
    Gupta SK, Sharma M, Behera AK, Bisht R, Kaul R (1997) Sequence of complementary deoxyribonucleic acid encoding bonnet monkey (Macaca radiata) zona pellucida glycoprotein-ZP1 and its high-level expression in Escherichia coli. Biol Reprod 57:532–538CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Université Paris-7, Laboratoire de Biologie Physico-Chimique des Proteines Membranaires, Institut de Biologie Physico-ChimiqueParisFrance

Personalised recommendations