Mammalian Membrane Receptors Expression as Inclusion Bodies in Escherichia coli

  • Bernard Mouillac
  • Jean-Louis BanèresEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 601)


Integral membrane proteins, in particular receptors, regulate numerous physiological functions. The primary difficulty presented by their study in vitro is to obtain them in sufficient amounts in a functional state. Escherichia coli is a host of choice for producing recombinant proteins for structural studies. However, insertion of G-protein coupled receptors into its plasma membrane usually results in bacterial death. An alternative approach consists of targeting recombinant receptors to inclusion bodies, where they accumulate without affecting bacterial growth, and then fold them in vitro . We describe here a general approach that consists of accumulating the receptor in bacterial inclusion bodies, then purifying it under denaturing conditions. A simple assay is then described to screen for refolding conditions of the protein.

Key words

Escherichia coli GPCR inclusion bodies membrane protein receptor refolding 


  1. 1.
    Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18:1723–1729CrossRefPubMedGoogle Scholar
  2. 2.
    Bockaert J, Claeysen S, Becamel C, Pinloche S, Dumuis A (2002) G protein-coupled receptors: dominant players in cell-cell communication. Int Rev Cytol 212:63–132CrossRefPubMedGoogle Scholar
  3. 3.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745Google Scholar
  4. 4.
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265CrossRefPubMedGoogle Scholar
  5. 5.
    Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387Google Scholar
  6. 6.
    Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491Google Scholar
  7. 7.
    Kobilka B, Schertler GF (2008) New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol Sci 29:79–83CrossRefPubMedGoogle Scholar
  8. 8.
    Serrano-Vega MJ, Magnani F, Shibata Y, Tate CG (2008) Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci USA 105:877–882CrossRefPubMedGoogle Scholar
  9. 9.
    Sarramegna V, Talmont F, Demange P, Milon A (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci 60:1529–1546CrossRefPubMedGoogle Scholar
  10. 10.
    Mancia F, Hendrickson WA (2007) Expression of recombinant G-protein coupled receptors for structural biology. Mol Biosyst 3:723–734CrossRefPubMedGoogle Scholar
  11. 11.
    Tucker J, Grisshammer R (1996) Purification of a rat neurotensin receptor expressed in Escherichia coli. Biochem J 317:891–899PubMedGoogle Scholar
  12. 12.
    Weiss HM, Grisshammer R (2002) Purification and characterization of the human adenosine A(2a) receptor functionally expressed in Escherichia coli. Eur J Biochem 269:82–92CrossRefPubMedGoogle Scholar
  13. 13.
    Kiefer H, Krieger J, Olszewski JD, Von Heijne G, Prestwich GD, Breer H (1996) Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry 35:16077–16084CrossRefPubMedGoogle Scholar
  14. 14.
    Banères JL, Martin A, Hullot P, Girard JP, Rossi JC, Parello J (2003) Structure-based analysis of GPCR function: conformational adaptation of both agonist and receptor upon leukotriene B4 binding to recombinant BLT1. J Mol Biol 329:801–814CrossRefPubMedGoogle Scholar
  15. 15.
    Banères JL, Mesnier D, Martin A, Joubert L, Dumuis A, Bockaert J (2005) Molecular characterization of a purified 5-HT4 receptor: a structural basis for drug efficacy. J Biol Chem 280:20253–20260CrossRefPubMedGoogle Scholar
  16. 16.
    Park SH, Prytulla S, De Angelis AA, Brown JM, Kiefer H, Opella SJ (2006) High-resolution NMR spectroscopy of a GPCR in aligned bicelles. J Am Chem Soc 128:7402–7403CrossRefPubMedGoogle Scholar
  17. 17.
    Bane SE, Velasquez JE, Robinson AS (2007) Expression and purification of milligram levels of inactive G-protein coupled receptors in E. coli. Protein Expr Purif 52:348–355CrossRefPubMedGoogle Scholar
  18. 18.
    Damian M, Martin A, Mesnier D, Pin JP, Baneres JL (2006) Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO J 25:5693–5702CrossRefPubMedGoogle Scholar
  19. 19.
    Kiefer H, Vogel R, Maier K (2000) Bacterial expression of G-protein-coupled receptors: prediction of expression levels from sequence. Receptors Channels 7:109–119PubMedGoogle Scholar
  20. 20.
    Thai K, Choi J, Franzin CM, Marassi FM (2005) Bcl-XL as a fusion protein for the high-level expression of membrane-associated proteins. Protein Sci 14:948–955CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut de Génomique FonctionnelleMontpellierFrance
  2. 2.INSERM U661MontpellierFrance
  3. 3.Université Montpellier IMontpellierFrance
  4. 4.Université Montpellier IIMontpellierFrance
  5. 5.Institut des Biomolécules Max Mousseron, Faculté de Pharmacie, Université Montpellier I, Université Montpellier IIMontpellierFrance

Personalised recommendations