Amphipols and Fluorinated Surfactants: Two Alternatives to Detergents for Studying Membrane Proteins In vitro

  • Cécile Breyton
  • Bernard Pucci
  • Jean-Luc PopotEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 601)


Handling integral membrane proteins in aqueous solutions traditionally relies on the use of detergents, which are surfactants capable of dispersing the components of biological membranes into mixed micelles. The dissociating character of detergents, however, most often causes solubilized membrane proteins to be unstable. This has prompted the development of alternative, less-aggressive surfactants designed to keep membrane proteins soluble, after they have been solubilized, under milder conditions. A short overview is presented of the structure, properties, and uses of two families of such surfactants: amphiphilic polymers (“amphipols”) and fluorinated surfactants.

Key words

Amphipols detergents fluorinated surfactants membrane proteins 



Particular thanks are due to J.-L. Banères, L.J. Catoire, D. Charvolin, T. Dahmane, F. Giusti, Y. Gohon, F. Lebaupain, K.L. Martinez, and M. Zoonens for suggestions about the manuscript and help with the figures. Thanks are also due to A. Polidori and G. Durand, from LCBOSMV, who were greatly involved in the synthesis and physical-chemical analysis of various FSs or non-ionic APols. This work has benefited, in particular, from funding by the EC BIO4-CT98-0269; STREP LSHG-CT-2005-513770 IMPS (Innovative Tools for Membrane Protein Structural Proteomics), the Human Frontier Science Program Organization (grant RG00223/2000-M), the Agence Nationale pour la Recherche PCV07 186241, and the CNRS (Interdisciplinary program Physique et Chimie du Vivant; DRITT grant ST 83747-04).


  1. 1.
    Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406CrossRefPubMedGoogle Scholar
  2. 2.
    Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402CrossRefPubMedGoogle Scholar
  3. 3.
    Rosenbusch JP (2001) Stability of membrane proteins: relevance for the selection of appropriate methods for high-resolution structure determinations. J Struct Biol 136:144–157CrossRefPubMedGoogle Scholar
  4. 4.
    Gohon Y, Popot J-L (2003) Membrane protein-surfactant complexes. Curr Opin Colloid Interface Sci 8:15–22CrossRefGoogle Scholar
  5. 5.
    Sanders CR, Hoffmann AK, Gray DN, Keyes MH, Ellis CD (2004) French swimwear for membrane proteins. ChemBioChem 5:423–426CrossRefPubMedGoogle Scholar
  6. 6.
    Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397CrossRefPubMedGoogle Scholar
  7. 7.
    Brotherus JR, Jost PC, Griffith OH, Hokin LE (1979) Detergent inactivation of sodium- and potassium-activated adenosinetriphosphatase of the electric eel. Biochemistry 18:5043–50CrossRefPubMedGoogle Scholar
  8. 8.
    McIntosh RV, Cohen BB, Steel CM (1984) The use of detergents in velocity sedimentation of cell culture IgM. J Immunol Methods 74:59–64CrossRefPubMedGoogle Scholar
  9. 9.
    Page MG, Rosenbusch JP, Yamato I (1988) The effects of pH on proton sugar symport activity of the lactose permease purified from Escherichia coli. J Biol Chem 263:15897–15905PubMedGoogle Scholar
  10. 10.
    Lund S, Orlowski S, de Foresta B, Champeil P, le Maire M, Møller JV (1989) Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem 264:4907–4915PubMedGoogle Scholar
  11. 11.
    Breyton C, Tribet C, Olive J, Dubacq J-P, Popot J-L (1997) Dimer to monomer transition of the cytochrome b 6 f complex: causes and consequences. J Biol Chem 272:21892–21900CrossRefPubMedGoogle Scholar
  12. 12.
    Musatov A, Ortega-Lopez J, Robinson NC (2000) Detergent-solubilized bovine cytochrome c oxidase: dimerization depends on the amphiphilic environment. Biochemistry 39:12996–13004CrossRefPubMedGoogle Scholar
  13. 13.
    Asmar-Rovira GA, Asseo-García AM, Quesada O, Hanson MA, Cheng A, Nogueras C, Lasalde-Dominicci JA, Stevens RC (2008) Biophysical and ion channel functional characterization of the Torpedo californica nicotinic acetylcholine receptor in varying detergent-lipid environments. J Membr Biol 223:13–26CrossRefPubMedGoogle Scholar
  14. 14.
    Serrano-Vega MJ, Magnani F, Shibata Y, Tate CG (2008) Conformational thermostabilization of the b1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci U S A 105:877–882CrossRefPubMedGoogle Scholar
  15. 15.
    Magnani F, Shibata Y, Serrano-Vega MJ, Tate CG (2008) Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. Proc Natl Acad Sci U S A 105:10744–49CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou Y, Bowie JU (2000) Building a thermostable membrane protein. J Biol Chem 275:6975–6979CrossRefPubMedGoogle Scholar
  17. 17.
    Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AGW, Tate CG, Schertler GFX (2008) Structure of a β1-adrenergic G protein-coupled receptor. Nature 454:486–491Google Scholar
  18. 18.
    Yu SM, McQuade DT, Quinn MA, Hackenberger CP, Krebs MP, Polans AS, Gellman SH (2000) An improved tripod amphiphile for membrane protein solubilization. Protein Sci 9:2518–2527CrossRefPubMedGoogle Scholar
  19. 19.
    Chae PS, Wander MJ, Bowling AP, Laible PD, Gellman SH (2008) Glycotripod amphiphiles for solubilization and stabilization of a membrane-protein superassembly: importance of branching in the hydrophilic portion. ChemBioChem 9:1706–1709CrossRefPubMedGoogle Scholar
  20. 20.
    Theisen MJ, Potocky TB, McQuade DT, Gellman SH, Chiu ML (2005) Crystallization of bacteriorhodopsin solubilized by a tripod amphiphile. Biochim Biophys Acta 1751:213–216PubMedGoogle Scholar
  21. 21.
    Sanders CR, Prosser RS (1998) Bicelles: a model membrane system for all seasons? Structure 6:1227–1234CrossRefPubMedGoogle Scholar
  22. 22.
    Prosser RS, Evanics F, Kitevski JL, Al-Abdul-Wahid MS (2006) Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins. Biochemistry 45:8453–8465CrossRefPubMedGoogle Scholar
  23. 23.
    Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069CrossRefPubMedGoogle Scholar
  24. 24.
    Whorton MR, Bokoch MP, Rasmussen SGF, Huang B, Zare RN, Kobilka B, Sunahara RK (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104:7682–7687CrossRefPubMedGoogle Scholar
  25. 25.
    Bayburt TH, Grinkova YV, Sligar SG (2006) Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs. Arch Biochem Biophys 450:215–222CrossRefPubMedGoogle Scholar
  26. 26.
    Schafmeister CE, Miercke LJW, Stroud RA (1993) Structure at 2.5 Å of a designed peptide that maintains solubility of membrane proteins. Science 262:734–738Google Scholar
  27. 27.
    McGregor C-L, Chen L, Pomroy NC, Hwang P, Go S, Chakrabartty A, Privé GG (2003) Lipopeptide detergents designed for the structural study of membrane proteins. Nat Biotechnol 21:171–176CrossRefPubMedGoogle Scholar
  28. 28.
    Kissa E (1994) Fluorinated surfactants: synthesis, properties, applications. Marcel Dekker, New YorkGoogle Scholar
  29. 29.
    Mukerjee P (1994) Fluorocarbon – hydrocarbon interactions in micelles and other lipid assemblies, at interfaces, and in solutions. Colloid Surf A 84:1–10CrossRefGoogle Scholar
  30. 30.
    Nakano TY, Sugihara G, Nakashima T, Yu SC (2002) Thermodynamic study of mixed hydrocarbon/fluorocarbon surfactant system by conductometric and fluorimetric techniques. Langmuir 18:8777–8785CrossRefGoogle Scholar
  31. 31.
    Barthélémy P, Tomao V, Selb J, Chaudier Y, Pucci B (2002) Fluorocarbon-hydrocarbon non-ionic surfactant mixtures: a study of their miscibility. Langmuir 18:2557–2563CrossRefGoogle Scholar
  32. 32.
    Rodnin MV, Posokhov YO, Contino-Pépin C, Brettmann J, Kyrychenko A, Palchevskyy SS, Pucci B, Ladokhin AS (2008) Interactions of fluorinated surfactants with diphtheria toxin T-domain: testing new media for studies of membrane proteins. Biophys J 94:4348–4357CrossRefPubMedGoogle Scholar
  33. 33.
    Zarif L, Riess JG, Pucci B, Pavia AA (1993) Biocompatibility of alkyl and perfluoroalkyl telomeric surfactants derived from THAM. Biomater Artif Cells Immobilization Biotechnol 21:597–608PubMedGoogle Scholar
  34. 34.
    Maurizis JC, Pavia AA, Pucci B (1993) Efficiency of non-ionic telomeric surfactants for the solubilization of subcellular fractions proteins. Bioorg Med Chem Lett 3:161–164CrossRefGoogle Scholar
  35. 35.
    Polidori A, Pucci B, Pavia AA (1994) Non-ionic glycosidic surfactants derived from tris(hydroxymethyl) amidomethane : synthesis, physical and biocompatibility data. New J Chem 18:839–848Google Scholar
  36. 36.
    Chabaud E, Barthélémy P, Mora N, Popot J-L, Pucci B (1998) Stabilization of integral membrane proteins in aqueous solution using fluorinated surfactants. Biochimie 80:515–530CrossRefPubMedGoogle Scholar
  37. 37.
    Lebaupain F, Salvay AG, Olivier B, Durand G, Fabiano A-S, Michel N, Popot J-L, Ebel C, Breyton C, Pucci B (2006) Lactobionamide surfactants with hydrogenated, hemifluorinated or perfluorinated tails: physical-chemical and biochemical characterization. Langmuir 22:8881–8890Google Scholar
  38. 38.
    Pavia AA, Pucci B, Riess JG, Zarif L (1992) New perfluoroalkyl telomeric non-ionic surfactants: synthesis, physicochemical and biological properties. Makromol Chem 193:2505–2517CrossRefGoogle Scholar
  39. 39.
    Posokhov YO, Rodnin MV, Das SK, Pucci B, Ladokhin AS (2008) FCS study of the thermodynamics of membrane protein insertion into the lipid bilayer chaperoned by fluorinated surfactants. Biophys J 95:L54–L56CrossRefPubMedGoogle Scholar
  40. 40.
    Talbot J-C, Dautant A, Polidori A, Pucci B, Cohen-Bouhacina T, Maali A, Salin B, Brèthes D, Velours J, Giraud, M-F (2009) Hydrogenated and fluorinated surfactants derived from tris(hydroxymethyl)-acrylamidomethane allow the purification of a highly active yeast F1F0 ATP synthase with an enhanced stability. J Bioenerg Biomemb, in the press (DOI: 10.1007/s10863-009-9235-5)Google Scholar
  41. 41.
    Barthélémy P, Améduri B, Chabaud E, Popot J-L, Pucci B (1999) Synthesis and preliminary assessment of ethyl-terminated perfluoroalkyl non-ionic surfactants derived from Tris(hydroxymethyl)acrylamidomethane. Org Lett 1:1689–1692CrossRefPubMedGoogle Scholar
  42. 42.
    Breyton C, Chabaud E, Chaudier Y, Pucci B, Popot J-L (2004) Hemifluorinated surfactants: a non-dissociating environment for handling membrane proteins in aqueous solutions? FEBS Lett 564:312–318CrossRefPubMedGoogle Scholar
  43. 43.
    Chaudier Y, Zito F, Barthélémy P, Stroebel D, Améduri B, Popot J-L, Pucci B (2002) Synthesis and preliminary biochemical assessment of ethyl-terminated perfluoroalkylamine oxide surfactants. Bioorg Med Chem Lett 12:1587–1590CrossRefPubMedGoogle Scholar
  44. 44.
    Polidori A, Presset M, Lebaupain F, Améduri B, Popot J-L, Breyton C, Pucci B (2006) Fluorinated and hemifluorinated surfactants derived from maltose: synthesis and application to handling membrane proteins in aqueous solution. Bioorg Med Chem Lett 16:5827–5831CrossRefPubMedGoogle Scholar
  45. 45.
    Abla M, Durand G, Pucci B (2008) Glucose-based surfactants with hydrogenated, fluorinated, or hemifluorinated tails: synthesis and comparative physical-chemical characterization. J Org Chem 73:8142–8153CrossRefPubMedGoogle Scholar
  46. 45a.
    Breyton C, Gabel F, Abla M, Pierre Y, Lebaupain F, Durand G, Popot J-L, Ebel C, Pucci B (2009) Micellar and biochemical properties of (hemi)fluorinated surfactants are controlled by the size of the polar head. Biophys J 97:1077–1086Google Scholar
  47. 46.
    Israelachvili JN, Mitchell DJ, Ninham BW (1977) Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta 470:185–201CrossRefPubMedGoogle Scholar
  48. 47.
    Henderson R (1975) The structure of purple membrane from Halobacterium halobium: analysis of the X-ray diffraction pattern. J Mol Biol 93:123–138CrossRefPubMedGoogle Scholar
  49. 48.
    Dencher NA, Heyn MP (1978) Formation and properties of bacteriorhodopsin monomers in the non-ionic detergents octyl-b-d-glucoside and Triton X-100 FEBS Lett 96:322–326Google Scholar
  50. 49.
    Lebaupain F (2007) Développement de l’utilisation des tensioactifs fluorés pour la biochimie des protéines membranaires, Doctorat de l’Université Paris-7, ParisGoogle Scholar
  51. 50.
    Park K-H, Berrier C, Lebaupain F, Pucci B, Popot J-L, Ghazi A, Zito F (2007) Fluorinated and hemifluorinated surfactants as alternatives to detergents for membrane protein cell-free synthesis. Biochem J 403:183–187CrossRefPubMedGoogle Scholar
  52. 51.
    Palchevskyy SS, Posokhov YO, Olivier B, Popot J-L, Pucci B, Ladokhin AS (2006) Chaperoning of membrane protein insertion into lipid bilayers by hemifluorinated surfactants: application to diphtheria toxin. Biochemistry 45:2629–2635CrossRefPubMedGoogle Scholar
  53. 52.
    Petkova V, Benattar J-J, Zoonens M, Zito F, Popot J-L, Polidori A, Jasseron S, Pucci B (2007) Free-standing films of fluorinated surfactants as 2D matrices for organizing detergent-solubilized membrane proteins. Langmuir 23:4303–4309Google Scholar
  54. 53.
    Dauvergne J, Polidori A, Vénien-Bryan C, Pucci B (2008) Synthesis of a hemifluorinated amphiphile designed for self-assembly and two-dimensional crystallization of membrane proteins. Tetrahedron Lett 49:2247–2250CrossRefGoogle Scholar
  55. 54.
    Huang K-S, Bayley H, Liao M-J, London E, Khorana HG (1981) Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J Biol Chem 256:3802–3809PubMedGoogle Scholar
  56. 55.
    Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci U S A 93:15047–15050CrossRefPubMedGoogle Scholar
  57. 56.
    Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8–35. Anal Biochem 334:318–334CrossRefPubMedGoogle Scholar
  58. 57.
    Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290Google Scholar
  59. 58.
    Giusti F, Popot J-L, Tribet C (2010) Förster resonance energy transfer analysis of the assembly of amphipol particles (in prepa-ration)Google Scholar
  60. 59.
    Gohon Y, Dahmane T, Ruigrok R, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537CrossRefPubMedGoogle Scholar
  61. 60.
    Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot J-L, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869Google Scholar
  62. 61.
    Popot J-L, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Hervé P, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574CrossRefPubMedGoogle Scholar
  63. 62.
    Zoonens M, Giusti F, Zito F, Popot J-L (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404CrossRefPubMedGoogle Scholar
  64. 63.
    Tribet C, Diab C, Dahmane T, Zoonens M, Popot J-L, Winnik, FM (2009) Thermo-dynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir, in the press, PMID: 19594168Google Scholar
  65. 64.
    Zoonens M, Catoire LJ, Giusti F, Popot J-L (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci U S A 102:8893–8898CrossRefPubMedGoogle Scholar
  66. 64a.
    Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot J-L (2009) Solution NMR mapping of water-accessible residues in the transmembrane β-barrel of OmpX. Eur Biophys J, in the press, PMID: 19639312.Google Scholar
  67. 65.
    Charvolin D, Picard M, Huang L-S, Courant J-C, Berry EA, Popot J-L (2010) Solution behavior and crystallization of cytochrome bc 1 in the presence of amphipols (in preparation)Google Scholar
  68. 66.
    Pocanschi CL, Dahmane T, Gohon Y, Rappaport F, Apell H-J, Kleinschmidt JH, Popot J-L (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45: 13954–13961CrossRefPubMedGoogle Scholar
  69. 67.
    Dahmane T, Damian M, Mary S, Popot, J-L, Banères J-L (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521Google Scholar
  70. 68.
    le Maire M, Champeil P, Møller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111CrossRefPubMedGoogle Scholar
  71. 69.
    Champeil P, Menguy T, Tribet C, Popot J-L, le Maire M (2000) Interaction of amphipols with the sarcoplasmic Ca2+-ATPase. J Biol Chem 275:18623–18637CrossRefPubMedGoogle Scholar
  72. 70.
    Martinez KL, Gohon Y, Corringer P-J, Tribet C, Mérola F, Changeux J-P, Popot J-L (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs physical constraints. FEBS Lett 528:251–256CrossRefPubMedGoogle Scholar
  73. 71.
    Gorzelle BM, Hoffman AK, Keyes MH, Gray DN, Ray DG, Sanders CR II (2002) Amphipols can support the activity of a membrane enzyme. J Am Chem Soc 124: 11594–11595CrossRefPubMedGoogle Scholar
  74. 72.
    Charvolin D, Perez J-B, Rouvière F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot J-L (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci U S A 106:405–410CrossRefPubMedGoogle Scholar
  75. 73.
    Tribet C, Audebert R, Popot J-L (1997) Stabilisation of hydrophobic colloidal dispersions in water with amphiphilic polymers: application to integral membrane proteins. Langmuir 13:5570–5576CrossRefGoogle Scholar
  76. 74.
    Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Popot J-L, Guittet E (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J Magn Res 197:91–95CrossRefGoogle Scholar
  77. 75.
    Nagy JK, Kuhn Hoffmann A, Keyes MH, Gray DN, Oxenoid K, Sanders CR (2001) Use of amphipathic polymers to deliver a membrane protein to lipid bilayers. FEBS Lett 501:115–120Google Scholar
  78. 76.
    Diab C, Winnik FM, Tribet C (2007) Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols). Langmuir 23:3025–3035Google Scholar
  79. 77.
    Diab C, Tribet C, Gohon Y, Popot J-L, Winnik FM (2007) Complexation of integral membrane proteins by phosphorylcholine-based amphipols. Biochim Biophys Acta 1768:2737–2747CrossRefPubMedGoogle Scholar
  80. 78.
    Dahmane T, Giusti F, Catoire LJ, Popot J-L 2010 Sulfonated amphipols: synthesis, properties and applications. In preparationGoogle Scholar
  81. 78a.
    Bazzacco P (2009) Non-ionic amphipols: new tools for in vitro studies of membrane proteins. Validation and development of biochemical and biophysical applications. Doctorat de l’Université Paris-7-Denis Diderot, Paris.Google Scholar
  82. 79.
    Prata C, Giusti F, Gohon Y, Pucci B, Popot J-L, Tribet C (2001) Non-ionic amphiphilic polymers derived from Tris(hydroxymethyl)-acrylamidomethane keep membrane proteins soluble and native in the absence of detergent. Biopolymers 56:77–84Google Scholar
  83. 80.
    Sharma KS, Durand G, Giusti F, Olivier B, Fabiano A-S, Bazzacco P, Dahmane T, Ebel C, Popot J-L, Pucci B (2008) Glucose-based amphiphilic telomers designed to keep membrane proteins soluble in aqueous solutions: synthesis and physicochemical characterization. Langmuir 24:13581–13590CrossRefPubMedGoogle Scholar
  84. 80a.
    Bazzacco P, Sharma KS, Durand G, Giusti F, Ebel C, Popot J-L, Pucci B (2009) Grafted glucose-based amphipols: Synthesis, solution behavior, and biochemical properties. Submitted for publicationGoogle Scholar
  85. 81.
    Duval-Terrié C, Cosette P, Molle G, Muller G, Dé E (2003) Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization. Protein Sci 12:681–689Google Scholar
  86. 82.
    Picard M, Duval-Terrié C, Dé E, Champeil P (2004) Stabilization of membranes upon interaction of amphipathic polymers with membrane proteins. Protein Sci 13:3056–3058CrossRefPubMedGoogle Scholar
  87. 83.
    Pierre Y, Breyton C, Kramer D, Popot J-L (1995) Purification and characterization of the cytochrome b 6 f complex from Chlamydomonas reinhardtii. J Biol Chem 270:29342–29349CrossRefPubMedGoogle Scholar
  88. 84.
    Banères J-L, Martin A, Hullot P, Girard J-P, Rossi J-C, Parello J (2003) Structure-based analysis of GPCR function. Conformational adaptation of both agonist and receptor upon leukotriene B4 binding to recombinant BLT1. J Mol Biol 329:801–814CrossRefPubMedGoogle Scholar
  89. 85.
    Popot J-L, Gerchman S-E, Engelman DM (1987) Refolding of bacteriorhodopsin in lipid bilayers: a thermodynamically controlled two-stage process. J Mol Biol 198: 655–676CrossRefPubMedGoogle Scholar
  90. 86.
    Tribet C, Mills D, Haider M, Popot J-L (1998) Scanning transmission electron microscopy study of the molecular mass of amphipol/cytochrome b 6 f complexes. Biochimie 80:475–482Google Scholar
  91. 87.
    Flötenmeyer M, Weiss H, Tribet C, Popot J-L, Leonard K (2007) The use of amphipathic polymers for cryo-electron microscopy of NADH:ubiquinone oxidoreductase (Complex I). J Microsc 227:229–235CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Cécile Breyton
    • 1
  • Bernard Pucci
    • 2
  • Jean-Luc Popot
    • 3
    Email author
  1. 1.Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques and Université Paris-7, UMR 5075 CNRS/CEA/UJFGrenobleFrance
  2. 2.Laboratoire de Chimie Bioorganique et des Systèmes Moléculaires VectorielsUniversité d’Avignon et des Pays de Vaucluse, Faculté des SciencesAvignonFrance
  3. 3.Laboratoire de Physico-Chimie Moléculaire des Membranes BiologiquesCNRS and Université Paris-7, Institut de Biologie Physico-ChimiqueParisFrance

Personalised recommendations