Practical Considerations of Membrane Protein Instability during Purification and Crystallisation

  • Christopher G. TateEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 601)


Crystallisation of integral membranes requires milligrams of purified protein in a homogeneous, monodisperse state, and crucially, the membrane protein must also be fully functional and stable. The stability of membrane proteins in solution is dependent on the type of detergents used, but unfortunately the use of the most stabilising detergent can often decrease the probability of obtaining crystals that diffract to high resolution, especially of small membrane proteins. A number of strategies have been developed to facilitate the purification of membrane proteins in a functional form, which have led to new possibilities for structure determination.

Key words

Detergents G protein-coupled receptors thermostability 


  1. 1.
    le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111CrossRefPubMedGoogle Scholar
  2. 2.
    Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79PubMedGoogle Scholar
  3. 3.
    Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406CrossRefPubMedGoogle Scholar
  4. 4.
    Serrano-Vega MJ, Magnani F, Shibata Y, Tate CG (2008) Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci U S A 105:877–882CrossRefPubMedGoogle Scholar
  5. 5.
    Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405:647–655CrossRefPubMedGoogle Scholar
  6. 6.
    Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666:2–18CrossRefPubMedGoogle Scholar
  7. 7.
    Newstead S, Ferrandon S, Iwata S (2008) Rationalizing alpha-helical membrane protein crystallization. Protein Sci 17:466–472CrossRefPubMedGoogle Scholar
  8. 8.
    Jastrzebska B, Fotiadis D, Jang GF, Stenkamp RE, Engel A, Palczewski K (2006) Functional and structural characterization of rhodopsin oligomers. J Biol Chem 281:11917–11922CrossRefPubMedGoogle Scholar
  9. 9.
    Tate CG, Whiteley E, Betenbaugh MJ (1999) Molecular chaperones stimulate the functional expression of the cocaine-sensitive serotonin transporter. J Biol Chem 274:17551–17558CrossRefPubMedGoogle Scholar
  10. 10.
    Ishihara G, Goto M, Saeki M, Ito K, Hori T, Kigawa T, Shirouzu M, Yokoyama S (2005) Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors Protein. Expr Purif 41:27–37CrossRefGoogle Scholar
  11. 11.
    Butler PJ, Ubarretxena-Belandia I, Warne T, Tate CG (2004) The Escherichia coli multidrug transporter EmrE is a dimer in the detergent-solubilised state. J Mol Biol 340:797–808CrossRefPubMedGoogle Scholar
  12. 12.
    Chen YJ, Pornillos O, Lieu S, Ma C, Chen AP, Chang G (2007) X-ray structure of EmrE supports dual topology model. Proc Natl Acad Sci U S A 104:18999–19004CrossRefPubMedGoogle Scholar
  13. 13.
    Warne T, Serrano-Vega MJ, Tate CG, Schertler GF (2009) Development and crystallization of a minimal thermostabilized G protein-coupled receptor. Protein Exp Purif 65:204–213CrossRefGoogle Scholar
  14. 14.
    Edwards PC, Li J, Burghammer M, McDowell JH, Villa C, Hargrave PA, Schertler GF (2004) Crystals of native and modified bovine rhodopsins and their heavy atom derivatives. J Mol Biol 343:1439–1450CrossRefPubMedGoogle Scholar
  15. 15.
    Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1438CrossRefPubMedGoogle Scholar
  16. 16.
    Lemieux MJ, Reithmeier RA, Wang DN (2002) Importance of detergent and phospholipid in the crystallization of the human erythrocyte anion-exchanger membrane domain. J Struct Biol 137:322–332CrossRefPubMedGoogle Scholar
  17. 17.
    Guan L, Smirnova IN, Verner G, Nagamori S, Kaback HR (2006) Manipulating phospholipids for crystallization of a membrane transport protein. Proc Natl Acad Sci U S A 103:1723–1726CrossRefPubMedGoogle Scholar
  18. 18.
    Lee SY, Lee A, Chen J, MacKinnon R (2005) Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc Natl Acad Sci U S A 102:15441–15446CrossRefPubMedGoogle Scholar
  19. 19.
    Auer M, Kim MJ, Lemieux MJ, Villa A, Song J, Li XD, Wang DN (2001) High-yield expression and functional analysis of Escherichia coli glycerol-3-phosphate transporter. Biochemistry 40:6628–6635CrossRefPubMedGoogle Scholar
  20. 20.
    Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681CrossRefPubMedGoogle Scholar
  21. 21.
    Drew D, Newstead S, Sonoda Y, Kim H, von Heijne G, Iwata S (2008) GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat Protoc 3:784–798CrossRefPubMedGoogle Scholar
  22. 22.
    Newstead S, Kim H, von Heijne G, Iwata S, Drew D (2007) High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104:13936–13941CrossRefPubMedGoogle Scholar
  23. 23.
    Drew DE, von Heijne G, Nordlund P, de Gier JW (2001) Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. FEBS Lett 507:220–224CrossRefPubMedGoogle Scholar
  24. 24.
    Magnani F, Shibata Y, Serrano-Vega MJ, Tate CG (2008) Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. Proc Natl Acad Sci U S A 105:10744–10749CrossRefPubMedGoogle Scholar
  25. 25.
    Standfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, Schertler GF (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372:1179–1188CrossRefPubMedGoogle Scholar
  26. 26.
    De Grip WJ (1982) Thermal stability of rhodopsin and opsin in some novel detergents. Methods Enzymol 81:256–265CrossRefPubMedGoogle Scholar
  27. 27.
    Galka JJ, Baturin SJ, Manley DM, Kehler AJ, O’Neil JD (2008) Stability of the glycerol facilitator in detergent solutions. Biochemistry 47:3513–3524CrossRefPubMedGoogle Scholar
  28. 28.
    Engel CK, Chen L, Prive GG (2002) Stability of the lactose permease in detergent solutions. Biochim Biophys Acta 1564:47–56CrossRefPubMedGoogle Scholar
  29. 29.
    Faham S, Yang D, Bare E, Yohannan S, Whitelegge JP, Bowie JU (2004) Side-chain contributions to membrane protein structure and stability. J Mol Biol 335:297–305CrossRefPubMedGoogle Scholar
  30. 30.
    Hughes AV, Rees P, Heathcote P, Jones MR (2006) Kinetic analysis of the thermal stability of the photosynthetic reaction center from Rhodobacter sphaeroides. Biophys J 90:4155–4166CrossRefPubMedGoogle Scholar
  31. 31.
    Lau FW, Nauli S, Zhou Y, Bowie JU (1999) Changing single side-chains can greatly enhance the resistance of a membrane protein to irreversible inactivation. J Mol Biol 290:559–564CrossRefPubMedGoogle Scholar
  32. 32.
    Maneri LR, Low PS (1988) Structural stability of the erythrocyte anion transporter, band 3, in different lipid environments. A differential scanning calorimetric study. J Biol Chem 263:16170–16178PubMedGoogle Scholar
  33. 33.
    Grinberg AV, Gevondyan NM, Grinberg NV, Grinberg VY (2001) The thermal unfolding and domain structure of Na+/K+-exchanging ATPase. A scanning calorimetry study. Eur J Biochem 268:5027–5036CrossRefPubMedGoogle Scholar
  34. 34.
    Alexandrov AI, Mileni M, Chien EY, Hanson MA, Stevens RC (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16:351–359CrossRefPubMedGoogle Scholar
  35. 35.
    Weiss HM, Grisshammer R (2002) Purification and characterization of the human adenosine A(2a) receptor functionally expressed in Escherichia coli. Eur J Biochem 269:82–92CrossRefPubMedGoogle Scholar
  36. 36.
    Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217CrossRefPubMedGoogle Scholar
  37. 37.
    Tucker J, Grisshammer R (1996) Purification of a rat neurotensin receptor expressed in Escherichia coli. Biochem J 317(Pt 3):891–899PubMedGoogle Scholar
  38. 38.
    Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402CrossRefPubMedGoogle Scholar
  39. 39.
    Gohon Y, Dahmane T, Ruigrok RW, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot JL, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537CrossRefPubMedGoogle Scholar
  40. 40.
    Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot JL, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869CrossRefPubMedGoogle Scholar
  41. 41.
    McGregor CL, Chen L, Pomroy NC, Hwang P, Go S, Chakrabartty A, Prive GG (2003) Lipopeptide detergents designed for the structural study of membrane proteins. Nat Biotechnol 21:171–176CrossRefPubMedGoogle Scholar
  42. 42.
    Zhao X, Nagai Y, Reeves PJ, Kiley P, Khorana HG, Zhang S (2006) Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc Natl Acad Sci U S A 103:17707–17712CrossRefPubMedGoogle Scholar
  43. 43.
    Yeh JI, Du S, Tortajada A, Paulo J, Zhang S (2005) Peptergents: peptide detergents that improve stability and functionality of a membrane protein, glycerol-3-phosphate dehydrogenase. Biochemistry 44:16912–16919CrossRefPubMedGoogle Scholar
  44. 44.
    Zhou Y, Bowie JU (2000) Building a thermostable membrane protein. J Biol Chem 275:6975–6979CrossRefPubMedGoogle Scholar
  45. 45.
    Oxenoid K, Kim HJ, Jacob J, Sonnichsen FD, Sanders CR (2004) NMR assignments for a helical 40 kDa membrane protein. J Am Chem Soc 126:5048–5049CrossRefPubMedGoogle Scholar
  46. 46.
    Shibata Y, White J, Magnani F, Serrano-Vega MJ, Grisshammer R, Tate CG (2009) Thermostabilisation of the neurotensin receptor in a defined agonist-binding ­conformation. J Mol Biol 390:262–277CrossRefPubMedGoogle Scholar
  47. 47.
    Chou PY, Fasman GD (1978) Empirical predictions of protein conformation. Annu Rev Biochem 47:251–276CrossRefPubMedGoogle Scholar
  48. 48.
    Gether U, Ballesteros JA, Seifert R, Sanders-Bush E, Weinstein H, Kobilka BK (1997) Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J Biol Chem 272:2587–2590CrossRefPubMedGoogle Scholar
  49. 49.
    Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491CrossRefPubMedGoogle Scholar
  50. 50.
    Sarkar CA, Dodevski I, Kenig M, Dudli S, Mohr A, Hermans E, Pluckthun A (2008) Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc Natl Acad Sci U S A 105:14808–14813CrossRefPubMedGoogle Scholar
  51. 51.
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+conduction and selectivity. Science 280:69–77CrossRefPubMedGoogle Scholar
  52. 52.
    Lemieux MJ, Song J, Kim MJ, Huang Y, Villa A, Auer M, Li XD, Wang DN (2003) Three-dimensional crystallization of the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Protein Sci 12:2748–2756CrossRefPubMedGoogle Scholar
  53. 53.
    Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387CrossRefPubMedGoogle Scholar
  54. 54.
    McKibbin C, Farmer NA, Jeans C, Reeves PJ, Khorana HG, Wallace BA, Edwards PC, Villa C, Booth PJ (2007) Opsin stability and folding: modulation by phospholipid bicelles. J Mol Biol 374:1319–1332CrossRefPubMedGoogle Scholar
  55. 55.
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265CrossRefPubMedGoogle Scholar
  56. 56.
    Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273CrossRefPubMedGoogle Scholar
  57. 57.
    Bamber L, Harding M, Butler PJ, Kunji ER (2006) Yeast mitochondrial ADP/ATP carriers are monomeric in detergents. Proc Natl Acad Sci U S A 103:16224–16229CrossRefPubMedGoogle Scholar
  58. 58.
    Kunji ERS, Harding M, Butler PJG, Akamine P (2008) Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography. Methods 46:62–72CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.MRC Laboratory of Molecular BiologyCambridgeUK

Personalised recommendations