Membrane Protein Expression in Cell-Free Systems

  • Birgit Schneider
  • Friederike Junge
  • Vladimir A. Shirokov
  • Florian Durst
  • Daniel Schwarz
  • Volker Dötsch
  • Frank BernhardEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 601)


Cell-free expression has emerged as a promising tool for the fast and efficient production of membrane proteins. The rapidly growing number of successfully produced targets in combination with the continuous development of new applications significantly promotes the distribution of this technology. Membrane protein synthesis by cell-free expression does not appear to be restricted by origin, size or topology of the target, and its global application is therefore a highly valuable characteristic. The technology is relatively fast to establish in standard biochemical labs, and it does not require expensive equipment. Moreover, it enables the production of membrane proteins in completely new modes, like the direct translation into detergent micelles, which is not possible with any other expression system. In this protocol, we focus on the currently most efficient cell-free expression system for membrane proteins based on Escherichia coli extracts.

Key words

Cell extracts cell-free expression system coupled transcription/translation detergents integral membrane protein solubilization 


  1. 1.
    Klammt C, Löhr F, Schäfer B, Haase W, Dötsch V, Rüterjans H, Glaubitz C, Bernhard F (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271:568–580CrossRefPubMedGoogle Scholar
  2. 2.
    Liguori L, Marques B, Villegas-Mendez A, Rohte R, Lenormand JL (2007) Production of membrane proteins using cell-free expression systems. Expert Rev Proteomics 4:79–90CrossRefPubMedGoogle Scholar
  3. 3.
    Klammt C, Schwarz D, Eifler N, Engel A, Piehler J, Haase W, Hahn S, Dötsch V, Bernhard F (2007) Cell-free production of G protein-coupled receptors for functional and structural studies. J Struct Biol 158:482–493CrossRefPubMedGoogle Scholar
  4. 4.
    Wagner S, Bader ML, Drew D, de Gier JW (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24:364–371CrossRefPubMedGoogle Scholar
  5. 5.
    Kim DM, Swartz JR (1999) Prolonging cell-free protein synthesis with a novel ATP regeneration system. Biotechnol Bioeng 66:180–188CrossRefPubMedGoogle Scholar
  6. 6.
    Klammt C, Schwarz D, Fendler K, Haase W, Dötsch V, Bernhard F (2005) Evaluation of detergents for the soluble expression of α-helical and β-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J 272:6024–6038CrossRefPubMedGoogle Scholar
  7. 7.
    Ozawa K, Wu PS, Dixon NE, Otting G (2006) 15N-labelled proteins by cell free protein synthesis: Strategies for high-throughput NMR for proteins and protein-ligand complexes. FEBS J 273:4154–4159CrossRefPubMedGoogle Scholar
  8. 8.
    Reckel S, Sobhanifar S, Schneider B, Junge F, Schwarz D, Durst F, Löhr F, Güntert P, Bernhard F, Dötsch V (2008) Transmembrane segment enhanced labeling as a tool for the backbone assignment of alpha-helical membrane proteins. Proc Natl Acad Sci U S A 105:8262–8267CrossRefPubMedGoogle Scholar
  9. 9.
    Trbovic N, Klammt C, Koglin A, Löhr F, Bernhard F, Dötsch V (2005) Efficient strategy for the rapid backbone assignment of membrane proteins. Am Chem Soc 127:13504–13505CrossRefGoogle Scholar
  10. 10.
    Keller T, Schwarz D, Bernhard F, Dötsch V, Hunte C, Gorboulev V, Koepsell H (2008) Cell-free expression and functional reconstitution of eukaryotic drug transporters. Biochemistry 47:4552–4564CrossRefPubMedGoogle Scholar
  11. 11.
    Ishihara G, Goto M, Saeki M, Ito K, Hori T, Kigawa T, Shirouzu M, Yokoyama S (2005) Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expr Purif 41:27–37CrossRefPubMedGoogle Scholar
  12. 12.
    Nozawa A, Nanamiya H, Miyata T, Linka N, Endo Y, Weber APM, Tozawa Y (2007) A cell-free translation and proteoliposome reconstitution system for functional analysis of plant solute transporters. Plant Cell Phys 48:1815–1820CrossRefGoogle Scholar
  13. 13.
    Kalmbach R, Chizhov I, Schumacher MC, Friedrich T, Bamberg E, Engelhard M (2007) Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J Mol Biol 371:639–648CrossRefPubMedGoogle Scholar
  14. 14.
    Schwarz D, Junge F, Durst F, Frölich N, Schneider B, Reckel S, Sobhanifar S, Dötsch V, Bernhard F (2007) Preparative scale expression of membrane proteins in E. coli based continuous exchange cell-free systems. Nat Protocols 2:2945–2957CrossRefGoogle Scholar
  15. 15.
    Goerke AR, Swartz JR (2007) Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng 99:351–367CrossRefGoogle Scholar
  16. 16.
    Arduengo M, Schenborn E, Hurst R (2007) The role of cell-free rabbit reticulocyte expression systems in functional proteomics. In: Kudlicki W, Katzen F, Bennett R (eds) Cell-free expression. Landes Bioscience, Austin, TX, pp 1–18Google Scholar
  17. 17.
    Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164CrossRefPubMedGoogle Scholar
  18. 18.
    Shirokov VA, Kommer A, Kolb VA, Spirin AS (2007) Continuous-exchange protein-synthesizing systems. In: Grandi G (ed) Methods in molecular biology, vol 375: In vitro transcription and translation protocols, 2nd edn. Humana Press, Totowa, NJ, pp 19–55Google Scholar
  19. 19.
    Kopeina GS, Afonina ZA, Gromova KV, Shirokov VA, Vasiliev VD, Spirin AS (2008) Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA. Nucleic Acids Res 36:2476–2488CrossRefPubMedGoogle Scholar
  20. 20.
    Sawasaki T, Ogasawara T, Morishita R, Endo Y (2002) A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci U S A 99:14652–14657CrossRefPubMedGoogle Scholar
  21. 21.
    Davanloo P, Rosenberg AH, Dunn JJ, Studier FW (1984) Cloning and expression of the gene for bacteriophage T7 RNA Polymerase. Proc Natl Acad Sci U S A 81:2035–2039CrossRefPubMedGoogle Scholar
  22. 22.
    Zubay G (1973) In vitro synthesis of protein in microbial systems. Annu Rev Genet 7:267–287CrossRefPubMedGoogle Scholar
  23. 23.
    Park KH, Berrier C, Lebaupain F, Pucci B, Popot JL, Ghazi A, Zito F (2007) Fluorinated and hemifluorinated surfactants as alternatives to detergents for membrane protein cell-free synthesis. Biochem J 403:183–187CrossRefPubMedGoogle Scholar
  24. 24.
    Wuu JJ, Swartz JR (2008) High yield cell-free production of integral membrane proteins without refolding or detergents. Biochim Biophys Acta 1778:1237–1250CrossRefPubMedGoogle Scholar
  25. 25.
    Nomura S, Kondoh S, Asayama W, Asada A, Nishikawa S, Akiyoshi K (2007) Direct preparation of giant proteo-liposomes by in-vitro membrane protein synthesis. J Biotechnol 133:190–195CrossRefPubMedGoogle Scholar
  26. 26.
    Katzen F, Fletcher JE, Yang JP, Kang D, Peterson TC, Cappuccio JA, Blanchette CD, Sulchek T, Chromy BA, Hoeprich PD, Coleman MA, Kudlicki W (2008) Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach. J Proteome Res . doi: PubMedGoogle Scholar
  27. 27.
    Gesteland RF (1966) Isolation and characterization of ribonuclease 1 mutants of Escherichia coli. J Mol Biol 16:67–84CrossRefPubMedGoogle Scholar
  28. 28.
    Kang SH, Kim DM, Kim HJ, Jun SY, Lee KY, Kim HJ (2005) Cell-free production of aggregation-prone proteins in soluble and active forms. Biotechnol Prog 21:1412–1419CrossRefPubMedGoogle Scholar
  29. 29.
    Kim TW, Keum JW, Oh IS, Choi CY, Park CG, Kim DM (2006) Simple procedure for the construction of a robust and cost-effective cell-free protein synthesis system. J Biotechnol 126:554–561CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Birgit Schneider
    • 1
  • Friederike Junge
    • 1
  • Vladimir A. Shirokov
    • 2
  • Florian Durst
    • 1
  • Daniel Schwarz
    • 1
  • Volker Dötsch
    • 1
  • Frank Bernhard
    • 1
    Email author
  1. 1.Centre for Biomolecular Magnetic Resonance, University of Frankfurt/Main, Institute for Biophysical ChemistryFrankfurt/MainGermany
  2. 2.Institute of Protein Research, Russian Academy of SciencesPushchinoRussia

Personalised recommendations