Skip to main content

Global Analysis of Retina Lipids by Complementary Precursor Ion and Neutral Loss Mode Tandem Mass Spectrometry

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 579))

Summary

Despite an increasing recognition of the causative and diagnostic role of lipids in the onset and progression of retinal disease, information on the global lipid profile of the normal retina is quite limited. Here, a “shotgun” tandem mass spectrometry approach involving the use of multiple lipid class-specific precursor ion and neutral loss scan mode experiments has been employed to analyze lipid extracts from normal rat retina, obtained with minimal sample handling prior to analysis. Redundant information for the identification and characterization of molecular species in each lipid class was obtained by complementary analysis of their protonated or deprotonated precursor ions, or by analysis of their various ionic adducts (e.g., Na+, NH4 +, Cl, CH3OCO2 ). Notably, “alternative” precursor ion or neutral loss scan mode MS/MS experiments are introduced that were used to identify rat retina lipid molecular species that were not detected using “conventional” scan types typically employed in large-scale lipid-profiling experiments. This chapter outlines the principles and advantages of utilizing complementary/redundant identification of lipid species as a strategy to overcome inherent challenges and limitations of shotgun lipid analysis, and provides examples of the application of this strategy in the analysis of the retina lipidome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson RE. Lipids of ocular tissues. IV. A comparison of the phospholipids from the retina of six mammalian species. Exp Eye Res 1970;10(2):339–44.

    Article  PubMed  CAS  Google Scholar 

  2. Fliesler SJ, Anderson RE. Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 1983;22(2):79–131.

    Article  PubMed  CAS  Google Scholar 

  3. Lecomte M, Paget C, Ruggiero D, Wiernsperger N, Lagarde M. Docosahexaenoic acid is a major n-3 polyunsaturated fatty acid in bovine retinal microvessels. J Neurochem 1996;66(5):2160–7.

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien JS, Sampson EL. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J Lipid Res 1965;6(4):545–51.

    PubMed  Google Scholar 

  5. SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 2005;24(1):87–138.

    Article  PubMed  CAS  Google Scholar 

  6. Wang N, Anderson RE. Synthesis of docosa-hexaenoic acid by retina and retinal pigment epithelium. Biochem (Mosc) 1993;32(49):13703–9.

    Article  CAS  Google Scholar 

  7. Wang N, Anderson RE. Transport of 22:6n-3 in the plasma and uptake into retinal pigment epithelium and retina. Exp Eye Res 1993;57(2):225–33.

    Article  PubMed  CAS  Google Scholar 

  8. Soubias O, Teague WE, Gawrisch K. Evidence for specificity in lipid–rhodopsin interactions. J Biol Chem 2006;281(44):33233–41.

    Article  PubMed  CAS  Google Scholar 

  9. Suh M, Wierzbicki AA, Clandinin MT. Dietary fat alters membrane composition in rod outer segments in normal and diabetic rats: impact on content of very-long-chain (C > or = 24) polyenoic fatty acids. Biochim biophys Acta 1994;1214(1):54–62.

    Article  PubMed  CAS  Google Scholar 

  10. Watson AD. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 2006;47(10):2101–11.

    Article  PubMed  CAS  Google Scholar 

  11. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biolo-gical membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 1997;94(6):2339–44.

    Article  PubMed  CAS  Google Scholar 

  12. Ejsing CS, Duchoslav E, Sampaio J, et al. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 2006;78(17):6202–14.

    Article  PubMed  CAS  Google Scholar 

  13. Han X, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 2005;24(3):367–412.

    Article  PubMed  CAS  Google Scholar 

  14. Pulfer M, Murphy RC. Electrospray mass spetrometry of phospholipids. Mass Spectrom Rev 2003;22(5):332–64.

    Article  PubMed  CAS  Google Scholar 

  15. Schwudke D, Oegema J, Burton L, et al. Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal Chem 2006;78(2):585–95.

    Article  PubMed  CAS  Google Scholar 

  16. Welti R, Wang X, Williams TD. Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Anal Biochem 2003;314(1):149–52.

    Article  PubMed  CAS  Google Scholar 

  17. Welti R, Shah J, LeVine S, Esch SW, Williams TD, Wang X. High throughput lipid profiling to identify and characterize genes involved in lipid metabolism, signaling, and stress response. In: L. F, G.D. P, eds. Functional Lipidomics. New York: Marcel Dekker; 2005.

    Google Scholar 

  18. Jones JJ, Batoy SM, Wilkins CL. A comprehensive and comparative analysis for MALDI FTMS lipid and phospholipid profiles from biological samples. Comput Biol Chem 2005;29(4):294–302.

    Article  PubMed  CAS  Google Scholar 

  19. Jones JJ, Borgmann S, Wilkins CL, O’Brien RM. Characterizing the phospholipid profiles in mammalian tissues by MALDI FTMS. Anal Chem 2006;78(9):3062–71.

    Article  PubMed  CAS  Google Scholar 

  20. Jones JJ, Stump MJ, Fleming RC, Lay JO, Jr., Wilkins CL. Strategies and data analysis techniques for lipid and phospholipid chemistry elucidation by intact cell MALDI-FTMS. J Am Soc Mass Spectrom 2004;15(11):1665–74.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang X, Reid GE. Multistage tandem mass spectrometry of anionic phosphatidylcholine lipid adducts reveals novel dissociation pathways. Int J Mass Spectrom 2006;252(3):242–55.

    Article  CAS  Google Scholar 

  22. Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J Lipid Res 2001;42(4):663–72.

    PubMed  Google Scholar 

  23. Zacarias A, Bolanowski D, Bhatnagar A. Comparative measurements of multicomponent phospholipid mixtures by electrospray mass spectroscopy: relating ion intensity to concentration. Anal Biochem 2002;308(1):152–9.

    Article  PubMed  CAS  Google Scholar 

  24. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226(1):497–509.

    PubMed  CAS  Google Scholar 

  25. Haimi P, Uphoff A, Hermansson M, Somerharju P. Software tools for analysis of mass spectrometric lipidome data. Anal Chem 2006;78(24):8324–31.

    Article  PubMed  CAS  Google Scholar 

  26. Callender HL, Forrester JS, Ivanova P, Preininger A, Milne S, Brown HA. Quantification of diacylglycerol species from cellular extracts by electrospray ionization mass spectrometry using a linear regression algorithm. Anal Chem 2007;79(1):263–72.

    Article  PubMed  CAS  Google Scholar 

  27. Colsch B, Afonso C, Popa I, et al. Characterization of the ceramide moieties of sphingoglycolipids from mouse brain by ESI-MS/MS: identification of ceramides containing sphingadienine. J Lipid Res 2004;45(2):281–6.

    Article  PubMed  CAS  Google Scholar 

  28. Murphy RC, James PF, McAnoy AM, Krank J, Duchoslav E, Barkley RM. Detection of the abundance of diacylglycerol and triacylglycerol molecular species in cells using neutral loss mass spectrometry. Anal Biochem 2007;366(1):59–70.

    Article  PubMed  CAS  Google Scholar 

  29. Merrill AH, Sullards MC, Allegood JC, Kelly S, Wang E. Sphingolipidomics: High-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 2005;36(2):207–24.

    Article  PubMed  CAS  Google Scholar 

  30. Han X. Characterization and direct quantitation of ceramide molecular species from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 2002;302(2):199–212.

    Article  PubMed  CAS  Google Scholar 

  31. Song H, Hsu F, Ladenson J, Turk J. Algorithm for processing raw mass spectrometric data to identify and quantitate complex lipid molecular species in mixtures by data-dependent scanning and fragment ion database searching. J Am Soc Mass Spectrom 2007;18:1848–58.

    Article  PubMed  CAS  Google Scholar 

  32. Houjou T, Yamatani K, Nakanishi H, Imagawa M, Shimizu T, Taguchi R. Rapid and selective identification of molecular species in phosphatidylcholine and sphingomyelin by conditional neutral loss scanning and MS3. Rapid Commun Mass Spectrom 2004;18(24):3123–30.

    Article  PubMed  CAS  Google Scholar 

  33. Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta 2006;1761(1):121–8.

    Article  PubMed  CAS  Google Scholar 

  34. Hvattum E. Analysis of triacylglycerols with non-aqueous reversed-phase liquid chromatography and positive ion electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 2001;15(3):187–90.

    Article  PubMed  CAS  Google Scholar 

  35. Li YL, Su X, Stahl PD, Gross ML. Quantification of diacylglycerol molecular species in biological samples by electrospray ionization mass spectrometry after one-step derivatization. Anal Chem 2007;79(4):1569–74.

    Article  PubMed  CAS  Google Scholar 

  36. Cai SS, Syage JA. Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids. Anal Chem 2006;78(4):1191–9.

    Article  PubMed  CAS  Google Scholar 

  37. Han XL, Gross RW. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectr 1995;6(12):1202–10.

    Article  CAS  Google Scholar 

  38. Taguchi R, Houjou T, Nakanishi H, et al. Focused lipidomics by tandem mass spectrometry. J Chromatogr 2005;823(1):26–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Busik, J.V., Reid, G.E., Lydic, T.A. (2009). Global Analysis of Retina Lipids by Complementary Precursor Ion and Neutral Loss Mode Tandem Mass Spectrometry. In: Armstrong, D. (eds) Lipidomics. Methods in Molecular Biology, vol 579. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-322-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-322-0_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-321-3

  • Online ISBN: 978-1-60761-322-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics