Skip to main content
Book cover

Lipidomics pp 287–313Cite as

Qualitative and Quantitative Analyses of Phospholipids by LC–MS for Lipidomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 579))

Summary

In this chapter we are going to mention about three different approaches in lipidomics and how to effectively profile or calculate the amounts of phospholipids from major molecular species up to minor ones.

  1. 1)

    Precise identification and profiling of individual molecular species of phospholipids by data-dependent LC–ESIMS/MS combination with “Lipid Search”. We have been using this method as a global analysis of phospholipid. We usually applied this method at least once for new biological samples. We constructed an automated search engine, “Lipid Search”, for identification and profiling of phospholipids. Once after applying this analysis, a specified retention time can be obtained for each elution peak of individual phospholipid molecular species. Thus, reproducible identification results can be effectively obtained by our search engine from the data obtained by single LC or combination of LC with specified head group survey by using precursor ion scanning or neutral loss scanning.

  2. 2)

    An effective analytical method of LC–ESIMS for the identification of acidic phospholipids such as phosphatidic acid and phosphatidylserine. This is an approach of how to obtain sharp chromatographic peaks for acidic lipids such as phosphatidic acid and phosphatidylserine that are normally detected as broad elution peaks. With this improvement very small amount of molecular species in minor acidic phospholipids were effectively obtained.

  3. 3)

    Identification and profiling of molecular species in focused phospholipids. Third one is a combination analysis of focused methods such as precursor ion scanning or neutral loss scanning and high efficient LC separation. As reported previously, different combinations of fatty acids on sn-1 and sn-2 can be mostly detected as separate peaks by reverse phase LC–ESIMS. Detection limit of precursor ion scanning or neutral loss scanning is more than ten times higher than that of the method without LC separation, because of decreased ion suppression. We will mention about application of this methods for focused analysis on phosphatidylethanolamine-plasmalogens.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kim, H. Y., Wang, T. L., and Ma, Y. C. (1994) Lipid chromatography/mass spectrometry of phospholipids using electrospray ionization. Anal. Chem. 66, 3977–3982.

    Article  PubMed  CAS  Google Scholar 

  2. Pulfer, M., and Murphy, R. C. (2003) Electrospray mass spectrometry of phospholipids. Mass. Spectrom. Rev. 22, 332–364.

    Article  PubMed  CAS  Google Scholar 

  3. Han, X., and Gross, R. W. (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass. Spectrom. Rev. 24, 367–412.

    Article  PubMed  CAS  Google Scholar 

  4. Schwudke, D., Liebisch, G., Herzog, R., Schmitz, G., and Shevchenko, A. (2007) Shotgun lipidomics by tandem mass spectrometry under data-dependent acquisition control. Methods Enzymol. 433, 175–191.

    Article  PubMed  CAS  Google Scholar 

  5. Taguchi, R., Nishijima, M., and Shimizu, T. (2007) Basic analytical systems for lipidomics by mass spectrometry in Japan. Methods Enzymol. 432, 185–211.

    Article  PubMed  CAS  Google Scholar 

  6. Ikeda, K., Shimizu, T., and Taguchi, R. (2008) Targeted analysis of ganglioside and sulfatide molecular species by LC/ESI-MS/MS with theoretically expanded multiple reaction monitoring. J. Lipid Res. 49, 2678–2689.

    Article  PubMed  CAS  Google Scholar 

  7. Houjou, T., Yamatani, K., Imagawa, M., Shimizu, T., and Taguchi, R. (2005) A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 654–666.

    Article  PubMed  CAS  Google Scholar 

  8. Zhao, C., Du, G., Skowronek, K., Frohman, M. A., and Bar-Sagi, D. (2007) Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat. Cell Biol. 9, 706–712.

    PubMed  CAS  Google Scholar 

  9. Balasubramanian, K., Mirnikjoo, B., and Schroit, A. J. (2007) Regulated externalization of phosphatidylserine at the cell surface. J. Biol. Chem. 282, 18357–18364.

    Article  PubMed  CAS  Google Scholar 

  10. Bandoh, K., Aoki, J., Hosono, H., Kobayashi, S., Kobayashi, T., Murakami-Murofushi, K., Tsujimoto, M., Arai, H., and Inoue, K. (1999) Molecular cloning and characterization of a novel human g-protein-coupled receptor, EDG7, for lysophosphatidic acid. J. Biol. Chem. 274, 27776–27785.

    Article  PubMed  CAS  Google Scholar 

  11. Parrill, A. L., Wang, D., Bautista, D. L., Van Brocklyn, J. R., Lorincz, Z., Fischer, D. J., Baker, D. L., Liliom, K., Spiegel, S., and Tigyi, G. (2000) Identification of Edg1 receptor residues that recognize sphingosine 1-phosphate. J. Biol. Chem. 275, 39379–39384.

    Article  PubMed  CAS  Google Scholar 

  12. Park, K. S., Lee, H., Kim, M., Shin, E. H., Jo, S. H., Kim, S. D., Im, D., and Bae, Y. (2006) Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic migration via a process involving pertussis toxin-sensitive trimeric g-proteins. Mol. Pharmacol. 69, 1066–1073.

    PubMed  CAS  Google Scholar 

  13. Kim, H., Wang, T. L., and Ma, Y. (1994) Lipid chromatography/mass spectrometry of phospholipids using electrospray ionization. Anal. Chem. 66, 3977–3982.

    Article  PubMed  CAS  Google Scholar 

  14. Taguchi, R., Houjou, T., Nakanishi, H., Yamazaki, T., Ishida, M., Imagawa, M., and Shimizu, T. (2005) Focused lipidomics by tandem mass spectrometry. J. Chromatogr. B. 823, 26–36.

    Article  CAS  Google Scholar 

  15. Larsen, A., Mokastet, E., Lundanes, E., and Hvattum, E. (2002) Separation and identification of phosphatidylserine molecular speciesusing reversed-phase high-performance liquid chromatography with evaporative light scattering and mass spectrometric detection. J. Chromatogr. B. 774, 115–120.

    Article  CAS  Google Scholar 

  16. Ogiso, H., Suzuki, T., and Taguchi, R. (2008) Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Anal. Biochem. 375, 124–131.

    Article  PubMed  CAS  Google Scholar 

  17. Nagan, N., and Zoeller, R. A. (2001) Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40, 199–229.

    Article  PubMed  CAS  Google Scholar 

  18. Brites, P., Waterham, H. R., and Wanders, R. J. A. (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta 1636, 219–231.

    Article  PubMed  CAS  Google Scholar 

  19. Han, X., Holtzman, D. M., and McKeel, D. W. Jr. (2001) Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J. Neurochem. 77, 1168–1180.

    Article  PubMed  CAS  Google Scholar 

  20. Kerwin, J. L., Tuininga, A. R., and Ericsson, L. H. (1994) Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J. Lipid Res. 35, 1102–14.

    PubMed  CAS  Google Scholar 

  21. Zemski Berry, K. A., and Murphy, R. C. (2004) Electrospray ionization tandem mass spectrometry of glycerophosphoethanolamine plasmalogen phospholipids. J. Am. Soc. Mass Spectrom. 15, 1499–1508

    Article  PubMed  CAS  Google Scholar 

  22. Hsu, F. F., and Turk, J. (2007) Differentiation of 1-O-alk-1′-enyl-2-acyl and 1-O-alkyl-2-acyl glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 18,, 2065–73.

    Article  PubMed  CAS  Google Scholar 

  23. Yang, K., Zhao, Z., Gross, R. W., and Han, X. (2007) Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. PLoS ONE 2, e1368.

    Article  PubMed  Google Scholar 

  24. Bligh, E. G., and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Med. Sci. 37, 911–917.

    CAS  Google Scholar 

  25. Rouser, G., Kritchevsky, G., Yamamoto, A., Simon, G., Galli, C., and Bauman, A. J. (1969) Diethyaminoethyl and triethylaminoethyl cellulose column chromatographic procedures for phospholipids, glycolipids, and pigments. Methods Enzymol. 14, 273–317.

    Google Scholar 

  26. Wakelam, M. J. O., Pettitt, T. R., and Postle, A. D. (2007) Lipidomic analysis of signaling pathways. Methods Enzymol. 432, 233–246.

    Article  PubMed  CAS  Google Scholar 

  27. Xiao, Y., Chen, Y., Kennedy, A. W., Belinson, J., and Xu, Y. (2000) Evaluation of plasma lysophospholipids for diagnostic significance using electrospray ionization mass spectrometry analyses. Ann. N. Y. Acad. Sci. 905, 242–259.

    Article  PubMed  CAS  Google Scholar 

  28. Ishida, M., Imagawa, M., Shimizu, T., and Taguchi, R. (2005) Effective extraction and analysis for lysophosphatidic acids and their precursors in human plasma using electrospray ionization mass spectrometry. J. Mass Spectrom. Soc. Jpn. 54, 217–226.

    Article  Google Scholar 

Download references

Acknowledgments

This study was performed with the help of Special Coordination Funds from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nakanishi, H., Ogiso, H., Taguchi, R. (2009). Qualitative and Quantitative Analyses of Phospholipids by LC–MS for Lipidomics. In: Armstrong, D. (eds) Lipidomics. Methods in Molecular Biology, vol 579. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-322-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-322-0_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-321-3

  • Online ISBN: 978-1-60761-322-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics