Skip to main content

Examination of the Brain Mitochondrial Lipidome Using Shotgun Lipidomics

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 579))

Summary

Contamination from subcellular organelles and myelin has hindered attempts to characterize the lipidome of brain mitochondria. A high degree of mitochondrial purity is required for accurate measurements of the content and molecular species composition of mitochondrial lipids. We devised a discontinuous Ficoll and sucrose gradient procedure for the isolation and purification of brain mitochondria free from any detectable contamination. Shotgun lipidomics was used to analyze the lipid composition of the brain mitochondria. These procedures can be used to determine whether intrinsic lipid abnormalities underlie mitochondrial dysfunction associated with neurological and neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiebish M.A., Han X., Cheng H., Lunceford A., Clarke C.F., Moon H., Chuang J.H. and Seyfried T.N. (2008) Lipidomic analysis and electron transport chain activities in C57BL/6J mouse brain mitochondria. J Neurochem 106, 299–312.

    Article  PubMed  CAS  Google Scholar 

  2. Lai J.C., Walsh J.M., Dennis S.C. and Clark J.B. (1977) Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J Neurochem 28, 625–631.

    Article  PubMed  CAS  Google Scholar 

  3. Brown M.R., Sullivan P.G. and Geddes J.W. (2006) Synaptic mitochondria are more susceptible to Ca2+overload than nonsynaptic mitochondria. J Biol Chem 281, 11658–11668.

    Article  PubMed  CAS  Google Scholar 

  4. Dagani F., Gorini A., Polgatti M., Villa R.F. and Benzi G. (1983) Synaptic and non-synaptic mitochondria from rat cerebral cortex. Characterization and effect of pharmacological treatment on some enzyme activities related to energy transduction. Farmaco [Sci] 38, 584–594.

    CAS  Google Scholar 

  5. Villa R.F., Gorini A., Geroldi D., Lo Faro A. and Dell’Orbo C. (1989) Enzyme activities in perikaryal and synaptic mitochondrial fractions from rat hippocampus during development. Mech Ageing Dev 49, 211–225.

    Article  PubMed  CAS  Google Scholar 

  6. Wallace D.C. (2001) A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found Symp 235, 247–263; discussion 263–266.

    Article  PubMed  CAS  Google Scholar 

  7. Daum G. (1985) Lipids of mitochondria. Biochim Biophys Acta 822, 1–42.

    Article  PubMed  CAS  Google Scholar 

  8. Hoch F.L. (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113, 71–133.

    Article  PubMed  CAS  Google Scholar 

  9. Stuart J.A., Gillis T.E. and Ballantyne J.S. (1998) Remodeling of phospholipid fatty acids in mitochondrial membranes of estivating snails. Lipids 33, 787–793.

    Article  PubMed  CAS  Google Scholar 

  10. Rostovtseva T.K. and Bezrukov S.M. (2008) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40, 163–170.

    Article  PubMed  CAS  Google Scholar 

  11. Campbell A.M. and Chan S.H. (2008) Mitochondrial membrane cholesterol, the voltage dependent anion channel (VDAC), and the Warburg effect. J Bioenerg Biomembr 40, 193–197.

    Article  PubMed  CAS  Google Scholar 

  12. Han X. and Gross R.W. (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass spectrometry reviews 24, 367–412.

    Article  PubMed  CAS  Google Scholar 

  13. Yang K., Zhao Z., Gross R.W. and Han X. (2007) Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. PLoS ONE 2, e1368.

    Article  PubMed  Google Scholar 

  14. Han X. and Gross R.W. (2005) Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert review of proteomics 2, 253–264.

    Article  PubMed  CAS  Google Scholar 

  15. Han X., Holtzman D.M. and McKeel D.W., Jr. (2001) Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77, 1168–1180.

    Article  PubMed  CAS  Google Scholar 

  16. Cheng H., Mancuso D.J., Jiang X., Guan S., Yang J., Yang K., Sun G., Gross R.W. and Han X. (2008) Shotgun lipidomics reveals the temporally dependent, highly diversified cardiolipin profile in the mammalian brain: temporally coordinated postnatal diversification of cardiolipin molecular species with neuronal remodeling. Biochemistry 47, 5869–5880.

    Article  PubMed  CAS  Google Scholar 

  17. Han X., Yang K., Yang J., Cheng H. and Gross R.W. (2006) Shotgun lipidomics of cardiolipin molecular species in lipid extracts of biological samples. J Lipid Res 47, 864–879.

    Article  PubMed  CAS  Google Scholar 

  18. Zischka H., Lichtmannegger J., Jagemann N., Jennen L., Hamoller D., Huber E., Walch A., Summer K.H. and Gottlicher M. (2008) Isolation of highly pure rat liver mitochondria with the aid of zone-electrophoresis in a free flow device (ZE-FFE). Methods Mol Biol 424, 333–348.

    Article  PubMed  CAS  Google Scholar 

  19. Sims N.R. (1990) Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J Neurochem 55, 698–707.

    Article  PubMed  CAS  Google Scholar 

  20. Sims N.R. and Anderson M.F. (2008) Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protoc 3, 1228–1239.

    Article  PubMed  CAS  Google Scholar 

  21. Dagani F., Zanada F., Marzatico F. and Benzi G. (1985) Free mitochondria and synaptosomes from single rat forebrain. A comparison between two known subfractionation techniques. J Neurochem 45, 653–656.

    Article  PubMed  CAS  Google Scholar 

  22. Taylor S.W., Warnock D.E., Glenn G.M., Zhang B., Fahy E., Gaucher S.P., Capaldi R.A., Gibson B.W. and Ghosh S.S. (2002) An alternative strategy to determine the mitochondrial proteome using sucrose gradient fractionation and 1D PAGE on highly purified human heart mitochondria. J Proteome Res 1, 451–458.

    Article  PubMed  CAS  Google Scholar 

  23. Stocco D.M. and Hutson J.C. (1980) Characteristics of mitochondria isolated by rate zonal centrifugation from normal liver and Novikoff hepatomas. Cancer Res 40, 1486–1492.

    PubMed  CAS  Google Scholar 

  24. Graham J.M. (2001) Purification of a crude mitochondrial fraction by density-gradient centrifugation. Curr Protoc Cell Biol Chapter 3, Unit 3 4.

    Google Scholar 

  25. Lai J.C. and Clark J.B. (1976) Preparation and properties of mitochondria derived from synaptosomes. Biochem J 154, 423–432.

    PubMed  CAS  Google Scholar 

  26. Mena E.E., Hoeser C.A. and Moore B.W. (1980) An improved method of preparing rat brain synaptic membranes. Elimination of a contaminating membrane containing 2´,3´-cyclic nucleotide 3´-phosphohydrolase activity. Brain Res 188, 207–s31.

    Article  PubMed  CAS  Google Scholar 

  27. Rendon A. and Masmoudi A. (1985) Purification of non-synaptic and synaptic mitochondria and plasma membranes from rat brain by a rapid Percoll gradient procedure. J Neurosci Methods 14, 41–51.

    Article  PubMed  CAS  Google Scholar 

  28. Battino M., Bertoli E., Formiggini G., Sassi S., Gorini A., Villa R.F. and Lenaz G. (1991) Structural and functional aspects of the respiratory chain of synaptic and nonsynaptic mitochondria derived from selected brain regions. J Bioenerg Biomembr 23, 345–363.

    Article  PubMed  CAS  Google Scholar 

  29. Cheng H., Guan S. and Han X. (2006) Abundance of triacylglycerols in ganglia and their depletion in diabetic mice: implications for the role of altered triacylglycerols in diabetic neuropathy. J Neurochem 97, 1288–300.

    Article  PubMed  CAS  Google Scholar 

  30. Han X., Yang J., Cheng H., Ye H. and Gross R.W. (2004) Toward fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal Biochem 330, 317–331.

    Article  PubMed  CAS  Google Scholar 

  31. Brigande J.V., Platt F.M. and Seyfried T.N. (1998) Inhibition of glycosphingolipid biosynthesis does not impair growth or morphogenesis of the postimplantation mouse embryo. J Neurochem 70, 871–882.

    Article  PubMed  CAS  Google Scholar 

  32. Petrozzi L., Ricci G., Giglioli N.J., Siciliano G. and Mancuso M. (2007) Mitochondria and neurodegeneration. Biosci Rep 27, 87–104.

    Article  PubMed  CAS  Google Scholar 

  33. Beal M.F. (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58, 495–505.

    Article  PubMed  CAS  Google Scholar 

  34. Calabrese V., Scapagnini G., Giuffrida Stella A.M., Bates T.E. and Clark J.B. (2001) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem Res 26, 739–64.

    Article  PubMed  CAS  Google Scholar 

  35. Bowling A.C. and Beal M.F. (1995) Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sciences 56, 1151–1171.

    Article  PubMed  CAS  Google Scholar 

  36. Kiebish M.A., Han X., Cheng H., Chuang J.H. and Seyfried T.N. (2008) Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: Lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res 49, 2545–2556

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kiebish, M.A., Han, X., Seyfried, T.N. (2009). Examination of the Brain Mitochondrial Lipidome Using Shotgun Lipidomics. In: Armstrong, D. (eds) Lipidomics. Methods in Molecular Biology, vol 579. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-322-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-322-0_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-321-3

  • Online ISBN: 978-1-60761-322-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics