Skip to main content

The Tail-Suspension Test: A Model for Characterizing Antidepressant Activity in Mice

  • Protocol
  • First Online:
Mood and Anxiety Related Phenotypes in Mice

Part of the book series: Neuromethods ((NM,volume 42))

Abstract

The tail-suspension test (TST) is a widely used assay for screening potential antidepressant drugs. Its advantages include being a rapid, inexpensive, highly predictive and high-throughput screening test for the acute behavioral effects of antidepressants. The test is based on the principle that mice subjected to the short-term, inescapable stress of being suspended by their tail, will develop an immobile posture. A variety of antidepressant treatments irrespective of their primary mechanism of action decrease the time mice spend immobile by promoting escape-oriented behaviors. In recent years, the TST has been used for the behavioral characterization of genetically modified mice in an effort to identify novel targets of antidepressant activity for which pharmacological tools may not yet exist. Additionally, such mice are also tested in the TST for in vivo evaluation of the validity of current molecular theories of depression and antidepressant action. In this chapter, we provide a historical overview of the TST and discuss the utility and the validity of the TST as an animal model of antidepressant activity. This is followed by a detailed practical protocol on how to conduct a TST experiment in the laboratory as well as some troubleshooting tips. We describe important experimental variables that can interfere with the outcome of a TST experiment, and discuss how some of these factors have been manipulated in an effort to identify neural substrates that contribute to both baseline and antidepressant-induced changes in immobility. Finally, we also provide some examples of how such findings have been extrapolated to clinical depression. We conclude that the TST has great utility as a simple model to rapidly evaluate antidepressant-induced behavior and under some circumstances may also prove useful in determining genetic contributions to depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 1985;85(3):36770.

    Article  CAS  Google Scholar 

  2. Steru L, Chermat R, Thierry B, et al. The automated Tail Suspension Test: a computerized device which differentiates psychotropic drugs. Progress in Neuro-Psychopharmacology & Biological Psychiatry 1987;11(6):65971.

    Article  CAS  Google Scholar 

  3. Porsolt RD, Chermat R, Lenegre A, Avril I, Janvier S, Steru L. Use of the automated tail suspension test for the primary screening of psychotropic agents. Archives Internationales de Pharmacodynamie et de Therapie 1987;288(1):1130.

    PubMed  CAS  Google Scholar 

  4. Chermat R, Thierry B, Mico JA, Steru L, Simon P. Adaptation of the tail suspension test to the rat. Journal de Pharmacologie 1986;17(3):34850.

    PubMed  CAS  Google Scholar 

  5. Varty GB, Cohen-Williams ME, Hunter JC. The antidepressant-like effects of neurokinin NK1 receptor antagonists in a gerbil tail suspension test. Behavioural Pharmacology 2003;14(1):8795.

    Article  PubMed  CAS  Google Scholar 

  6. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neuroscience and Biobehavioral Reviews 2005;29(45):571625.

    Article  PubMed  CAS  Google Scholar 

  7. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Archives Internationales de Pharmacodynamie et de Therapie 1977;229(2):32736.

    PubMed  CAS  Google Scholar 

  8. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977;266(5604):7302.

    Article  PubMed  CAS  Google Scholar 

  9. O'Leary OF, Bechtholt AJ, Crowley JJ, Hill TE, Page ME, Lucki I. Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berl) 2007;192(3):35771.

    Article  Google Scholar 

  10. O'Leary OF, Bechtholt AJ, Crowley JJ, Valentino RJ, Lucki I. The role of noradrenergic tone in the dorsal raphe nucleus of the mouse in the acute behavioral effects of antidepressant drugs. European Neuropsychopharmacology 2007;17(3):21526.

    Article  PubMed  Google Scholar 

  11. Cryan JF, O'Leary OF, Jin SH, et al. Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors. Proceedings of the National Academy of Sciences of the United States of America 2004;101(21):818691.

    Article  PubMed  CAS  Google Scholar 

  12. Perrault G, Morel E, Zivkovic B, Sanger DJ. Activity of litoxetine and other serotonin uptake inhibitors in the tail suspension test in mice. Pharmacology, biochemistry, and behavior 1992;42(1):457.

    Article  PubMed  CAS  Google Scholar 

  13. Teste JF, Martin I, Rinjard P. Electrotherapy in mice: dopaminergic and noradrenergic effects in the Tail Suspension Test. Fundamental & clinical pharmacology 1990;4(1):3947.

    Article  CAS  Google Scholar 

  14. El Yacoubi M, Bouali S, Popa D, et al. Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proceedings of the National Academy of Sciences of the United States of America 2003;100(10):622732.

    Article  PubMed  CAS  Google Scholar 

  15. Liu X, Stancliffe D, Lee S, Mathur S, Gershenfeld HK. Genetic dissection of the tail suspension test: a mouse model of stress vulnerability and antidepressant response. Biological psychiatry 2007;62(1):8191.

    Article  PubMed  CAS  Google Scholar 

  16. Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Molecular Psychiatry 2004;9(4):32657.

    Article  PubMed  CAS  Google Scholar 

  17. Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. European Journal of Pharmacology 1978;47(4):37991.

    Article  PubMed  CAS  Google Scholar 

  18. Thierry B, Steru L, Chermat R, Simon P. Searching-waiting strategy: a candidate for an evolutionary model of depression? Behavioral and Neural Biology 1984;41(2):1809.

    Article  PubMed  CAS  Google Scholar 

  19. Lucki I. A prescription to resist proscriptions for murine models of depression. Psychopharmacology (Berl) 2001;153(3):3958.

    Article  CAS  Google Scholar 

  20. Dixon AK. Ethological strategies for defence in animals and humans: their role in some psychiatric disorders. The British Journal of Medical Psychology 1998;71 (Pt 4):41745.

    Article  PubMed  Google Scholar 

  21. Gilbert P, Allan S. The role of defeat and entrapment (arrested flight) in depression: an exploration of an evolutionary view. Psychological Medicine 1998;28(3):58598.

    Article  PubMed  CAS  Google Scholar 

  22. Weingartner H, Silberman E. Models of cognitive impairment: cognitive changes in depression. Psychopharmacology Bulletin 1982;18(2):2742.

    PubMed  CAS  Google Scholar 

  23. Vaugeois JM, Odievre C, Loisel L, Costentin J. A genetic mouse model of helplessness sensitive to imipramine. European Journal of Pharmacology 1996;316(23):R12.

    Article  PubMed  CAS  Google Scholar 

  24. Yoshikawa T, Watanabe A, Ishitsuka Y, Nakaya A, Nakatani N. Identification of multiple genetic loci linked to the propensity for “behavioral despair” in mice. Genome research 2002;12(3):35766.

    Article  PubMed  CAS  Google Scholar 

  25. McKinney WT, Jr., Bunney WE, Jr. Animal model of depression. I. Review of evidence: implications for research. Archives of General Psychiatry 1969;21(2):2408.

    Article  PubMed  Google Scholar 

  26. Willner P, Mitchell PJ. The validity of animal models of predisposition to depression. Behavioural Pharmacology 2002;13(3):16988.

    Article  PubMed  CAS  Google Scholar 

  27. Geyer M, Markou A. The role of preclinical models in the development of psychotropic drugs. In: Bloom F, Kupfer D, eds. Psychopharmacology: The Fifth Generation of Progress New York; Raven Press. 2000;44555.

    Google Scholar 

  28. McKinney WT. Overview of the past contributions of animal models and their changing place in psychiatry. Seminars in Clinical Neuropsychiatry 2001;6(1):6878.

    Article  PubMed  CAS  Google Scholar 

  29. Willner P. Animal models of depression: an overview. Pharmacology & Therapeutics 1990;45(3):42555.

    Article  CAS  Google Scholar 

  30. Geyer M, Markou A. Animal models of psychiatric disorders. In: Bloom F, Kupfer D, eds. Psychopharmacology: The Fourth Generation of Progress Raven Press. 1995;78798.

    Google Scholar 

  31. Sarter M, Bruno J. Animal models in biological psychiatry. In: D'haenen H, Boer Jd, Westenberg H, P PW, eds. Textbook of Biological Psychiatry: John Wiley & Sons. 2002:3744.

    Google Scholar 

  32. Vaugeois JM, Passera G, Zuccaro F, Costentin J. Individual differences in response to imipramine in the mouse tail suspension test. Psychopharmacology (Berl) 1997;134(4):38791.

    Article  CAS  Google Scholar 

  33. Swiergiel AH, Leskov IL, Dunn AJ. Effects of chronic and acute stressors and CRF on depression-like behavior in mice. Behavioural Brain Research 2008;186(1):3240.

    Article  PubMed  CAS  Google Scholar 

  34. Kamei J, Miyata S, Morita K, Saitoh A, Takeda H. Effects of selective serotonin reuptake inhibitors on immobility time in the tail suspension test in streptozotocin-induced diabetic mice. Pharmacology, Biochemistry, and Behavior 2003;75(2):24754.

    Article  PubMed  CAS  Google Scholar 

  35. Miyata S, Hirano S, Kamei J. Diabetes attenuates the antidepressant-like effect mediated by the activation of 5-HT1A receptor in the mouse tail suspension test. Neuropsychopharmacology 2004;29(3):461–9.

    Article  PubMed  CAS  Google Scholar 

  36. Yamano M, Yuki H, Yasuda S, Miyata K. Corticotropin-releasing hormone receptors mediate consensus interferon-alpha YM643-induced depression-like behavior in mice. The Journal of Pharmacology and Experimental Therapeutics 2000;292(1):181–7.

    PubMed  CAS  Google Scholar 

  37. Dunn AJ, Swiergiel AH. Effects of interleukin-1 and endotoxin in the forced swim and tail suspension tests in mice. Pharmacology, Biochemistry, and Behavior 2005;81(3):688–93.

    Article  PubMed  CAS  Google Scholar 

  38. Cryan JF, Hoyer D, Markou A. Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biological Psychiatry 2003;54(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  39. Naudon L, El Yacoubi M, Vaugeois JM, Leroux-Nicollet I, Costentin J. A chronic treatment with fluoxetine decreases 5-HT(1A) receptors labeling in mice selected as a genetic model of helplessness. Brain Research 2002;936(1–2):68–75.

    Article  PubMed  CAS  Google Scholar 

  40. Cryan JF, Leonard BE. 5-HT1A and beyond: the role of serotonin and its receptors in depression and the antidepressant response. Human Psychopharmacology 2000;15(2):113–35.

    Article  PubMed  CAS  Google Scholar 

  41. Thomson F, Craighead M. Innovative approaches for the treatment of depression: targeting the HPA axis. Neurochemical Research 2008;33(4):691–707.

    Article  PubMed  CAS  Google Scholar 

  42. Crowley JJ, Blendy JA, Lucki I. Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology (Berl) 2005;183(2):257–64.

    Article  CAS  Google Scholar 

  43. Crowley JJ, Brodkin ES, Blendy JA, Berrettini WH, Lucki I. Pharmacogenomic evaluation of the antidepressant citalopram in the mouse tail suspension test. Neuropsychopharmacology 2006;31(11):2433–42.

    Article  PubMed  CAS  Google Scholar 

  44. Liu X, Gershenfeld HK. Genetic differences in the tail-suspension test and its relationship to imipramine response among 11 inbred strains of mice. Biological Psychiatry 2001;49(7):575–81.

    Article  PubMed  CAS  Google Scholar 

  45. Yamada K, Watanabe A, Iwayama-Shigeno Y, Yoshikawa T. Evidence of association between gamma-aminobutyric acid type A receptor genes located on 5q34 and female patients with mood disorders. Neuroscience Letters 2003;349(1):9–12.

    Article  PubMed  CAS  Google Scholar 

  46. Edenberg HJ, Foroud T, Conneally PM, et al. Initial genomic scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 3, 5, 15, 16, 17, and 22. American Journal of Medical Genetics 1997;74(3):238–46.

    Article  PubMed  CAS  Google Scholar 

  47. Lad HV, Liu L, Paya-Cano JL, Fernandes C, Schalkwyk LC. Quantitative traits for the tail suspension test: automation, optimization, and BXD RI mapping. Mammalian Genome 2007;18(6–7):482–91.

    Article  PubMed  Google Scholar 

  48. van der Heyden JA, Molewijk E, Olivier B. Strain differences in response to drugs in the tail suspension test for antidepressant activity. Psychopharmacology (Berl) 1987;92(1):127–30.

    Article  Google Scholar 

  49. Crowley JJ, Jones MD, O'Leary OF, Lucki I. Automated tests for measuring the effects of antidepressants in mice. Pharmacology, Biochemistry, and Behavior 2004;78(2):269–74.

    Article  PubMed  CAS  Google Scholar 

  50. Chaki S, Nakazato A, Kennis L, et al. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. European Journal of Pharmacology 2004;485(1–3):145–58.

    Article  PubMed  CAS  Google Scholar 

  51. Nielsen DM, Carey GJ, Gold LH. Antidepressant-like activity of corticotropin-releasing factor type-1 receptor antagonists in mice. European Journal of Pharmacology 2004;499(1–2):135–46.

    Article  PubMed  CAS  Google Scholar 

  52. Zobel AW, Nickel T, Kunzel HE, et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. Journal of Psychiatric Research 2000;34(3):171–81.

    Article  PubMed  CAS  Google Scholar 

  53. Nielsen DM. Corticotropin-releasing factor type-1 receptor antagonists: the next class of antidepressants? Life Sciences 2006;78(9):909–19.

    Article  PubMed  CAS  Google Scholar 

  54. Czeh B, Fuchs E, Simon M. NK1 receptor antagonists under investigation for the treatment of affective disorders. Expert Opinion on Investigational Drugs 2006;15(5):479–86.

    Article  PubMed  CAS  Google Scholar 

  55. Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. The American Journal of Psychiatry 2008;165(5):617–20.

    Article  PubMed  Google Scholar 

  56. Katz MM, Koslow SH, Maas JW, et al. The timing, specificity and clinical prediction of tricyclic drug effects in depression. Psychological Medicine 1987;17(2):297–309.

    Article  PubMed  CAS  Google Scholar 

  57. Harmer CJ, Bhagwagar Z, Perrett DI, Vollm BA, Cowen PJ, Goodwin GM. Acute SSRI administration affects the processing of social cues in healthy volunteers. Neuropsychopharmacology 2003;28(1):148–52.

    Article  PubMed  CAS  Google Scholar 

  58. Harmer CJ, Hill SA, Taylor MJ, Cowen PJ, Goodwin GM. Toward a neuropsychological theory of antidepressant drug action: increase in positive emotional bias after potentiation of norepinephrine activity. The American Journal of Psychiatry 2003;160(5):990–2.

    Article  PubMed  Google Scholar 

  59. Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse behavior: interactions with laboratory environment. Science (New York) 1999;284(5420):1670–2.

    Article  CAS  Google Scholar 

  60. Wahlsten D, Metten P, Phillips TJ, et al. Different data from different labs: lessons from studies of gene-environment interaction. Journal of Neurobiology 2003;54(1):283–311.

    Article  PubMed  Google Scholar 

  61. Ripoll N, David DJ, Dailly E, Hascoet M, Bourin M. Antidepressant-like effects in various mice strains in the tail suspension test. Behavioural Brain Research 2003;143(2):193–200.

    Article  PubMed  CAS  Google Scholar 

  62. Teste JF, Pelsy-Johann I, Decelle T, Boulu RG. Anti-immobility activity of different antidepressant drugs using the tail suspension test in normal or reserpinized mice. Fundamental & Clinical Pharmacology 1993;7(5):219–26.

    Article  CAS  Google Scholar 

  63. Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neuroscience and Biobehavioral Reviews 2005;29(4–5):547–69.

    Article  PubMed  CAS  Google Scholar 

  64. Cryan JF, Markou A, Lucki I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends in Pharmacological Sciences 2002;23(5):238–45.

    Article  PubMed  CAS  Google Scholar 

  65. Overmier JB, Seligman ME. Effects of inescapable shock upon subsequent escape and avoidance responding. Journal of Comparative and Physiological Psychology 1967;63(1):28–33.

    Article  PubMed  CAS  Google Scholar 

  66. Vollmayr B, Henn FA. Learned helplessness in the rat: improvements in validity and reliability. Brain Research Brain Research Protocols 2001;8(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  67. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 1997;134(4):319–29.

    Article  CAS  Google Scholar 

  68. Kelly JP, Wrynn AS, Leonard BE. The olfactory bulbectomized rat as a model of depression: an update. Pharmacology & Therapeutics 1997;74(3):299–316.

    Article  CAS  Google Scholar 

  69. Weissman MM, Olfson M. Depression in women: implications for health care research. Science (New York) 1995;269(5225):799–801.

    Article  CAS  Google Scholar 

  70. Pelloux Y, Hagues G, Costentin J, Duterte-Boucher D. Helplessness in the tail suspension test is associated with an increase in ethanol intake and its rewarding effect in female mice. Alcoholism, Clinical and Experimental Research 2005;29(3):378–88.

    Article  PubMed  CAS  Google Scholar 

  71. David DJ, Nic Dhonnchadha BA, Jolliet P, Hascoet M, Bourin M. Are there gender differences in the temperature profile of mice after acute antidepressant administration and exposure to two animal models of depression? Behavioural Brain Research 2001;119(2):203–11.

    Article  PubMed  CAS  Google Scholar 

  72. Caldarone BJ, Karthigeyan K, Harrist A, et al. Sex differences in response to oral amitriptyline in three animal models of depression in C57BL/6 J mice. Psychopharmacology (Berl) 2003;170(1):94–101.

    Article  CAS  Google Scholar 

  73. Jones MD, Lucki I. Sex differences in the regulation of serotonergic transmission and behavior in 5-HT receptor knockout mice. Neuropsychopharmacology 2005;30(6):1039–47.

    Article  PubMed  CAS  Google Scholar 

  74. Nichols DE, Nichols CD. Serotonin receptors. Chemical Reviews 2008;108(5):1614–41.

    Article  PubMed  CAS  Google Scholar 

  75. Meziane H, Ouagazzal AM, Aubert L, Wietrzych M, Krezel W. Estrous cycle effects on behavior of C57BL/6 J and BALB/cByJ female mice: implications for phenotyping strategies. Genes, Brain, and Behavior 2007;6(2):192–200.

    Article  PubMed  CAS  Google Scholar 

  76. Bernardi M, Vergoni AV, Sandrini M, Tagliavini S, Bertolini A. Influence of ovariectomy, estradiol and progesterone on the behavior of mice in an experimental model of depression. Physiology & Behavior 1989;45(5):1067–8.

    Article  CAS  Google Scholar 

  77. Crawley JN, Belknap JK, Collins A, et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 1997;132(2):107–24.

    Article  CAS  Google Scholar 

  78. Mayorga AJ, Lucki I. Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacology (Berl) 2001;155(1):110–2.

    Article  CAS  Google Scholar 

  79. Juszczak GR, Sliwa AT, Wolak P, Tymosiak-Zielinska A, Lisowski P, Swiergiel AH. The usage of video analysis system for detection of immobility in the tail suspension test in mice. Pharmacology, Biochemistry, and Behavior 2006;85(2):332–8.

    Article  PubMed  CAS  Google Scholar 

  80. Bai F, Li X, Clay M, Lindstrom T, Skolnick P. Intra- and interstrain differences in models of “behavioral despair”. Pharmacology, Biochemistry, and Behavior 2001;70(2–3):187–92.

    Article  PubMed  CAS  Google Scholar 

  81. Trullas R, Jackson B, Skolnick P. Genetic differences in a tail suspension test for evaluating antidepressant activity. Psychopharmacology (Berl) 1989;99(2):287–8.

    Article  CAS  Google Scholar 

  82. Liu X, Gershenfeld HK. An exploratory factor analysis of the Tail Suspension Test in 12 inbred strains of mice and an F2 intercross. Brain Research Bulletin 2003;60(3):223–31.

    Article  PubMed  Google Scholar 

  83. Sallee FR, Pollock BG. Clinical pharmacokinetics of imipramine and desipramine. Clinical Pharmacokinetics 1990;18(5):346–64.

    Article  PubMed  CAS  Google Scholar 

  84. Popoli M, Brunello N, Perez J, Racagni G. Second messenger-regulated protein kinases in the brain: their functional role and the action of antidepressant drugs. Journal of Neurochemistry 2000;74(1):21–33.

    Article  PubMed  CAS  Google Scholar 

  85. Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putten H, Cryan JF. Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 2004;29(6):1050–62.

    Article  PubMed  CAS  Google Scholar 

  86. Porsolt R, Lenegre A. Behavioral models of depression. In: Elliott J, Heal D, Marsden C, eds. Experimental approaches to anxiety and depression. London: Wiley; 1992:73–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

O’Leary, O.F., Cryan, J.F. (2009). The Tail-Suspension Test: A Model for Characterizing Antidepressant Activity in Mice. In: Gould, T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 42. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-303-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-303-9_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-302-2

  • Online ISBN: 978-1-60761-303-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics