Skip to main content

The Forced Swimming Test in Mice: A Suitable Model to Study Antidepressants

  • Protocol
  • First Online:
Mood and Anxiety Related Phenotypes in Mice

Part of the book series: Neuromethods ((NM,volume 42))

Abstract

Among all animal models, the forced swimming test (FST) remains one of the mostly used tools for screening antidepressants with different mechanisms of action. This chapter reviews the main aspects of the FST in mice. Most of the sensitivity and variability factors that were assessed on the FST are summarized, as well as the most relevant data found in the literature of antidepressant effects on the FST in mice. From this data set, we have extrapolated some information about baseline levels of strain, and sensitivity against antidepressants. We have shown that many parameters have to be considered in this test to gain good reliability. Moreover, there was a fundamental inter-strain difference of response in the FST. The FST is a good screening tool with good reliability and predictive validity. Strain is one of the most important parameters to consider, for example Swiss and NMRI mice can be used to discriminate the mechanism of action of antidepressants; the CD-1 strain seems to be the most useful strain for screening purposes, but all results need to be arbitrated with spontaneous locomotor activity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977;229:327–36.

    PubMed  CAS  Google Scholar 

  2. Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M. Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 1979;57:201–10.

    Article  PubMed  CAS  Google Scholar 

  3. Petit-Demoulière B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl), 2005;177:245–55.

    Article  CAS  Google Scholar 

  4. Borsini F, Meli A. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl) 1988;94:147–60.

    Article  CAS  Google Scholar 

  5. Porsolt RD, Bertin A, Jalfre M. “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 1978;51:291–94.

    Article  PubMed  CAS  Google Scholar 

  6. West AP. Neurobehavioral studies of forced swimming: the role of learning and memory in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 1990;14:863–77.

    Article  PubMed  CAS  Google Scholar 

  7. Bourin M. Is it possible to predict the activity of a new antidepressant in animals with simple psychopharmacological tests? Fundam Clin Pharmacol 1990;4:49–64.

    Article  PubMed  CAS  Google Scholar 

  8. Porsolt RD. Animal models of depression: utility for transgenic research. Rev Neurosci 2000;11:53–8.

    PubMed  CAS  Google Scholar 

  9. Lucki I, Dalvi A, Mayorga AJ. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 2001;155:315–22.

    Article  CAS  Google Scholar 

  10. Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, Hen R, Koester S, Lederhendler I, Meaney M, Robbins T, Winsky L, Zalcman S. Preclinical models: status of basic research in depression. Biol Psychiatry 2002;52:503–28.

    Article  PubMed  Google Scholar 

  11. Eisch AJ, Bolanos CA, de Wit J, Simonak RD, Pudiak CM, Barrot M, Verhaagen J, Nestler EJ. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry 2003;54:994–1005.

    Article  PubMed  CAS  Google Scholar 

  12. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997;56:131–7.

    Article  PubMed  CAS  Google Scholar 

  13. Baez M, Volosin M. Corticosterone influences forced swim-induced immobility. Pharmacol Biochem Behav 1994;49:729–36.

    Article  PubMed  CAS  Google Scholar 

  14. Guo W, Todd K, Bourin M, Hascoet M, Kouadio F. Additive effects of glyburide and antidepressants in the forced swimming test: evidence for the involvement of potassium channel blockade. Pharmacol Biochem Behav 1996;54:725–30.

    Article  PubMed  CAS  Google Scholar 

  15. Redrobe JP, Pinot P, Bourin M. The effect of the potassium channel activator, cromakalim, on antidepressant drugs in the forced swimming test in mice. Fundam Clin Pharmacol 1996;10:524–8.

    Article  PubMed  CAS  Google Scholar 

  16. Slattery DA, Hudson AL, Nutt DJ. Invited review: the evolution of antidepressant mechanisms. Fundam Clin Pharmacol 2004;18:1–21.

    Article  PubMed  CAS  Google Scholar 

  17. Harkin AJ, Bruce KH, Craft B, Paul IA. Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur J Pharmacol 1999;372:207–13.

    Article  PubMed  CAS  Google Scholar 

  18. Khisti RT, Chopde CT, Jain SP. Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav 2000;67:137–43.

    Article  PubMed  CAS  Google Scholar 

  19. Gardier AM, Trillat AC, Malagié I, David D, Hascoët M, Colombel MC, Jolliet P, Jacquot C, Hen R, Bourin M. Récepteurs 5-HT1B de la sérotonine et effets antidépresseurs des inhibiteurs de recapture sélectifs de la sérotonine. C.R.Acad.Sci.Paris Life 2001;324:433–41.

    CAS  Google Scholar 

  20. Holmes A, Yang RJ, Murphy DL, Crawley JN. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 2002;27:914–23.

    Article  PubMed  CAS  Google Scholar 

  21. Cryan JF, Dalvi A, Jin SH, Hirsch BR, Lucki I, Thomas SA. Use of dopamine-beta-hydroxylase-deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs. J Pharmacol Exp Ther 2001;298:651–57.

    PubMed  CAS  Google Scholar 

  22. MacQueen GM, Ramakrishnan K, Croll SD, Siuciak JA, Yu G, Young LT, Fahnestock M. Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav Neurosci 2001;115:1145–53.

    Article  PubMed  CAS  Google Scholar 

  23. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T, Meuth S, Nagy A, Greene RW, Nestler EJ. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 2004; 20:10827–32.

    Article  Google Scholar 

  24. Bourin M, Fiocco AJ, Clenet F. How valuable are animal models in defining antidepressant activity? Hum Psychopharmacol 2001;16:9–21.

    Article  PubMed  CAS  Google Scholar 

  25. Dulawa SC, Holick KA, Gundersen B, Hen R. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004;29:1321–30.

    Article  PubMed  CAS  Google Scholar 

  26. Bourin M, Colombel MC, Redrobe JP, Nizard J, Hascoët M, Baker GB. Evaluation of efficacies of different classes of antidepressants in the forced swimming test in mice at different ages. Prog Neuropsychopharmacol Biol Psychiatry 1998;22:343–51.

    Article  PubMed  CAS  Google Scholar 

  27. David DJ, Bourin M, Hascoët M, Colombel MC, Baker GB, Jolliet P. Comparison of antidepressant activity in 4- and 40-week-old male mice in the forced swimming test: involvement of 5-HT1A and 5-HT1B receptors in old mice. Psychopharmacology (Berl) 2001;153:443–49.

    Article  CAS  Google Scholar 

  28. Browne RG. Effects of antidepressants and anticholinergics in a mouse “behavioral despair” test. Eur J Pharmacol 1979;58:331–34.

    Article  PubMed  CAS  Google Scholar 

  29. Denenberg VH, Talgo NW, Waters NS, Kenner GH. A computer-aided procedure for measuring swim rotation. Physiol Behav 1990;47:1023–5.

    Article  PubMed  CAS  Google Scholar 

  30. Dubocovich ML, Mogilnicka E, Areso PM. Antidepressant-like activity of the melatonin receptor antagonist, luzindole (N-0774), in the mouse behavioral despair test. Eur J Pharmacol 1990;182:313–25.

    Article  PubMed  CAS  Google Scholar 

  31. Sunal R, Gumusel B, Kayaalp SO. Effect of changes in swimming area on results of “behavioral despair test”. Pharmacol Biochem Behav 1995;49:891–6.

    Article  Google Scholar 

  32. Aley KO, Kulkarni SK. GABA-mediated modification of despair behavior in mice. Naunyn Schmiedebergs Arch Pharmacol 1989;339: 306–11.

    PubMed  CAS  Google Scholar 

  33. Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse behavior: interactions with laboratory environment. Science 1999;284:1670–2.

    Article  PubMed  CAS  Google Scholar 

  34. Cabib S, Orsini C, Le Moal M, Piazza PV. Abolition and reversal of strain differences in behavioral responses to drugs of abuse after a brief experience. Science 2000;289:463–5.

    Article  PubMed  CAS  Google Scholar 

  35. Cabib S, Puglisi-Allegra S, Ventura R. The contribution of comparative studies in inbred strains of mice to the understanding of the hyperactive phenotype. Behav Brain Res 2002;130:103–9.

    Article  PubMed  CAS  Google Scholar 

  36. Alonso SJ, Castellano MA, Afonso D, Rodriguez M. Sex differences in behavioral despair: relationships between behavioral despair and open field activity. Physiol Behav 1991;49:69–72.

    Article  PubMed  CAS  Google Scholar 

  37. David DJ, Nic Dhonnchadha BA, Jolliet P, Hascoët M, Bourin M. Are there gender differences in the temperature profile of mice after acute antidepressant administration and exposure to two animal models of depression? Behav Brain Res 2001;119: 203–11.

    Article  PubMed  CAS  Google Scholar 

  38. Voikar V, Koks S, Vasar E, Rauvala H. Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol Behav 2001;72:271–81.

    Article  PubMed  CAS  Google Scholar 

  39. Karolewicz B, Paul IA. Group housing of mice increases immobility and antidepressant sensitivity in the forced swim and tail suspension tests. Eur J Pharmacol 2001;415:197–201.

    Article  PubMed  CAS  Google Scholar 

  40. Hilakivi LA, Ota M, Lister RG. Effect of isolation on brain monoamines and the behavior of mice in tests of exploration, locomotion, anxiety and behavioral 'despair'. Pharmacol Biochem Behav 1989;33:371–4.

    Article  PubMed  CAS  Google Scholar 

  41. Yates G, Panksepp J, Ikemoto S, Nelson E, Conner R. Social isolation effects on the “behavioral despair” forced swimming test: effect of age and duration of testing. Physiol Behav 1991;49:347–53.

    Article  PubMed  CAS  Google Scholar 

  42. Lucki I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 1997;8:523–32.

    Article  PubMed  CAS  Google Scholar 

  43. Schramm NL, McDonald MP, Limbird LE. The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci 2001;21:4875–82.

    PubMed  CAS  Google Scholar 

  44. Krahe TE, Filgueiras CC, Schmidt SL. Effects of rotational side preferences on immobile behavior of normal mice in the forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 2002;26:169–76.

    Article  PubMed  Google Scholar 

  45. Bai F, Li X, Clay M, Lindstrom T, Skolnick P. Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav 2001;70:187–92.

    Article  PubMed  CAS  Google Scholar 

  46. David DJ, Renard CE, Jolliet P, Hascoët M, Bourin M. Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 2003;166:373–82.

    CAS  Google Scholar 

  47. Alcaro A, Cabib S, Ventura R, Puglisi-Allegra S. Genotype- and experience-dependent susceptibility to depressive-like responses in the forced-swimming test. Psychopharmacology (Berl) 2002;164:138–43.

    Article  CAS  Google Scholar 

  48. Arai I, Tsuyuki Y, Shiomoto H, Satoh M, Otomo S. Decreased body temperature dependent appearance of behavioral despair in the forced swimming test in mice. Pharmacol Res 2000;42:171–6.

    Article  PubMed  CAS  Google Scholar 

  49. Taltavull JF, Chefer VI, Shippenberg TS, Kiyatkin EA. Severe brain hypothermia as a factor underlying behavioral immobility during cold-water forced swim. Brain Res 2003;975:244–7.

    Article  PubMed  CAS  Google Scholar 

  50. Yoshikawa T, Watanabe A, Ishitsuka Y, Nakaya A, Nakatani N. Identification of multiple genetic loci linked to the propensity for “behavioral despair” in mice. Genome Res 2002;12:357–66.

    Article  PubMed  CAS  Google Scholar 

  51. Detke MJ, Lucki I. Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behav Brain Res 1996;73:43–6.

    Article  PubMed  CAS  Google Scholar 

  52. Nomura S, Shimizu J, Kinjo M, Kametani H, Nakazawa T. A new behavioral test for antidepressant drugs. Eur J Pharmacol 1982;83:171–5.

    Article  PubMed  CAS  Google Scholar 

  53. Raghavendra V, Kaur G, Kulkarni SK. Anti-depressant action of melatonin in chronic forced swimming-induced behavioral despair in mice, role of peripheral benzodiazepine receptor modulation. Eur Neuropsychopharmacol 2000;10:473–81.

    Article  PubMed  CAS  Google Scholar 

  54. Easton A, Arbuzova J, Turek FW. The circadian Clock mutation increases exploratory activity and escape-seeking behavior. Genes Brain Behav 2003;2:11–9.

    Article  PubMed  CAS  Google Scholar 

  55. Holmes A. Mouse Behavioral Models of Anxiety and Depression. In: Crawley JN ed. (ed) Mouse Behavioral Phenotyping. Society for Neuroscience, Washington DC, 2003; 43–7.

    Google Scholar 

  56. O'Neil MF, Moore NA. Animal models of depression: are there any? Hum Psychopharmacol 2003;18:239–54.

    Article  PubMed  Google Scholar 

  57. Wahlsten D, Metten P, Phillips TJ, Boehm SL, 2nd, Burkhart-Kasch S, Dorow J, Doerksen S, Downing C, Fogarty J, Rodd-Henricks K, Hen R, McKinnon CS, Merrill CM, Nolte C, Schalomon M, Schlumbohm JP, Sibert JR, Wenger CD, Dudek BC, Crabbe JC. Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 2003;54:283–311.

    Article  PubMed  Google Scholar 

  58. Andreatini R, Bacellar LF. Animal models: trait or state measure? The test-retest reliability of the elevated plus-maze and behavioral despair. Prog Neuropsychopharmacol Biol Psychiatry 2000;24:549–60.

    Article  PubMed  CAS  Google Scholar 

  59. Hirani K, Khisti RT, Chopde CT. Behavioral action of ethanol in Porsolt's forced swim test: modulation by 3 alpha-hydroxy-5 alpha-pregnan-20-one. Neuropharmacology 2002;43:1339–50.

    Article  PubMed  CAS  Google Scholar 

  60. Steru L, Chermat R, Thierry B, Simon P. The automated Tail Suspension Test: a computerized device which differentiates psychotropic drugs. Neuropsychopharmacol Biol Psychiatry 1987;11:659–71.

    Article  CAS  Google Scholar 

  61. Ripoll N, David DJP, Dailly E, Hascoët M, Bourin M. Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res 2003;143:193–200.

    Article  PubMed  CAS  Google Scholar 

  62. Mayorga AJ, Lucki I. Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacology 2001;155:110–2.

    Article  PubMed  CAS  Google Scholar 

  63. Redrobe JP, Bourin M. Augmentation of antidepressant pharmacotherapy: a preclinical approach using the mouse forced swimming test. CNS Spectrums 1999;4:73–81.

    Google Scholar 

  64. Bourin M, Colombel MC, Malinge M, Bradwejn J. Clonidine as a sensitizing agent in the forced swimming test for revealing antidepressant activity. J Psychiatry Neurosci 1991;16:199–203.

    PubMed  CAS  Google Scholar 

  65. De Graaf JS, Van Riezen H, Berendsen HHG, Van Delft AML. A set of behavioural tests predicting antidepressant activity. Current Trends Review 1985;5:291–301.

    Google Scholar 

  66. Malinge M, Bourin M, Colombel MC, Larousse C. Additive effects of clonidine and antidepressant drugs in the mouse forced-swimming test. Psychopharmacology (Berl) 1988;96:104–9.

    Article  CAS  Google Scholar 

  67. Devoize JL, Rigal F, Eschalier A, Trolese JF, Renoux M. Influence of naloxone on antidepressant drug effects in the forced swimming test in mice. Psychopharmacology (Berl) 1984;84:71–5.

    Article  CAS  Google Scholar 

  68. Luttinger D, Freedman M, Hamel L, Ward SJ, Perrone M. The effects of serotonin antagonists in a behavioral despair procedure in mice. Eur J Pharmacol 1985;107:53–8.

    Article  Google Scholar 

  69. Scotto di Tella AM, Mercier J. [Influence of the procedure of administration in the activity of some antidepressant or disinhibiting drugs upon behavioural despair (author's transl)]. J Pharmacol 1981;12:179–88.

    PubMed  CAS  Google Scholar 

  70. Szymczyk G, Zebrowska-Lupina I. Influence of antiepileptics on efficacy of antidepressant drugs in forced swimming test. Pol J Pharmacol 2000;52:337–44.

    PubMed  CAS  Google Scholar 

  71. Bourin M, Redrobe JP, Hascoët M, Baker GB, Colombel MC. A schematic representation of the psychopharmacological profile of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2000;20:1389–402.

    Article  Google Scholar 

  72. Biziere K, Kan JP, Souilhac J, Muyard JP, Roncucci R. Pharmacological evaluation of minaprine dihydrochloride, a new psychotropic drug. Arzneimittelforschung 1982;32:824–31.

    PubMed  CAS  Google Scholar 

  73. Biziere K, Worms P, Kan JP, Mandel P, Garattini S, Roncucci R. Minaprine, a new drug with antidepressant properties. Drugs Exp Clin Res 1985;11:831–40.

    PubMed  CAS  Google Scholar 

  74. Zocchi A, Varnier G, Arban R, Griffante C, Zanetti L, Bettelini L, Marchi M, Gerrard PA, Corsi M. Effects of antidepressant drugs and GR 205171, an neurokinin-1 (NK1) receptor antagonist, on the response in the forced swim test and on monoamine extracellular levels in the frontal cortex of the mouse. Neurosci Lett 2003;345:73–6.

    Article  PubMed  CAS  Google Scholar 

  75. Mogilnicka E, Czyrak A, Maj J. Dihydropyridine calcium channel antagonists reduce immobility in the mouse behavioral despair test; antidepressants facilitate nifedipine action. Eur J Pharmacol 1987;138:413–6.

    Article  PubMed  CAS  Google Scholar 

  76. Clenet F, De Vos A, Bourin M. Involvement of 5-HT(2C) receptors in the anti-immobi lity effects of antidepressants in the forced swimming test in mice. Eur Neuropsychopharmacol 2001;11:145–52.

    Article  PubMed  CAS  Google Scholar 

  77. Stenger A, Couzinier JP, Briley M. Psychopharmacology of midalcipran, 1-phenyl-1-diethyl-amino-carbonyl-2-aminomethylcyclopropane hydrochloride (F 2207), a new potential antidepressant. Psychopharmacology (Berl) 1987;91:147–53.

    Article  CAS  Google Scholar 

  78. Rogoz Z, Skuza G, Maj J. Pharmacological profile of milnacipran, a new antidepressant, given acutely. Pol J Pharmacol 1999;51:317–22.

    PubMed  CAS  Google Scholar 

  79. Redrobe JP, Bourin M, Colombel MC, Baker GB. Dose-dependent noradrenergic and serotonergic properties of venlafaxine in animal models indicative of antidepressant activity. Psychopharmacology (Berl) 1998;138:1–8.

    Article  CAS  Google Scholar 

  80. Da-Rocha MA, Jr., Puech AJ, Thiébot MH. Influence of anxiolytic drugs on the effects of specific serotonin reuptake inhibitors in the forced swimming test in mice. J Psychopharmacol 1997;11:211–8.

    Article  Google Scholar 

  81. Anjaneyulu M, Chopra K, Kaur I. Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice. J Med Food 2003;6:391–5.

    Article  PubMed  CAS  Google Scholar 

  82. Miura H, Naoi M, Nakahara D, Ohta T, Nagatsu T. Effects of moclobemide on forced-swimming stress and brain monoamine levels in mice. Pharmacol Biochem Behav 1996;53:469–75.

    Article  PubMed  CAS  Google Scholar 

  83. Kato M, Katayama T, Iwata H, Yamamura M, Matsuoka Y, Narita H. In vivo characterization of T-794, a novel reversible inhibitor of monoamine oxidase-A, as an antidepressant with a wide safety margin. J Pharmacol Exp Ther 1998;284:983–90.

    PubMed  CAS  Google Scholar 

  84. Eschalier A, Rigal F, Devoize JL, Trolese JF, Grillon C. Morphine pretreatment reduces clomipramine effect in mouse forced-swimming test. Eur J Pharmacol 1983;91:505–7.

    Article  PubMed  CAS  Google Scholar 

  85. Devoize JL, Rigal F, Eschalier A, Trolese JF. Naloxone inhibits clomipramine in mouse forced swimming test. Eur J Pharmacol 1982;78:229–31.

    Article  PubMed  CAS  Google Scholar 

  86. Schechter MD, Chance WT. Non-specificity of “behavioral despair” as an animal model of depression. Eur J Pharmacol 1979;60:139–42.

    Article  PubMed  CAS  Google Scholar 

  87. Machado-Viera R, Kapczinski F, Soares JC. Perspective for the development of animal models of bipolar disorders. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:209–24.

    Article  Google Scholar 

  88. Nixon M, Bourin M., K., Hascoët M, Colombel MC. Additive effects of the lithium and antidepressants in the forced swimming test: further evidence for involvement of the serotonergic system. Psychopharmacology. 1994;115:59–64.

    Article  PubMed  CAS  Google Scholar 

  89. Bourin M, Hascoët M, Colombel MC, Redrobe JP, Baker GB. Differential effects of clonidine, lithium and quinine in the forced swimming test in mice for antidepressants: possible roles of serotonergic system. Eur Neuropsychopharmacol 1996; 6: 231–6.

    Article  PubMed  CAS  Google Scholar 

  90. Redrobe JP, Bourin M. Evidence of the activity of lithium on the 5-HT1B receptors in the mouse forced swimming test: comparison with carbamazepine and sodium valproate. Psychopharmacology 1999;141:370–7.

    Article  PubMed  CAS  Google Scholar 

  91. Hata T, Itoh E, Nishikawa H. Behavioral characteristics of SART-stressed mice in the forced swim test and drug action. Pharmacol Biochem Behav 1995;51:849–53.

    Article  PubMed  CAS  Google Scholar 

  92. Overstreet DH, Pucilowski O, Rezvani AH, Janowsky DS. Administration of antidepressants, diazepam and psychomotor stimulants further confirms the utility of Flinders Sensitive Line rats as an animal model of depression. Psychopharmacology (Berl). 1995;121:27–37.

    Article  CAS  Google Scholar 

  93. Kitamura Y, Araki H, Gomita Y. Influence of ACTH on the effects of imipramine, desipramine and lithium on duration of immobility of rats in the forced swim test. Pharmacol Biochem Behav 2002;71:63–9.

    Article  PubMed  CAS  Google Scholar 

  94. Wegener G, Bandpey Z, Heiberg IL, Mørk A, Rosenberg R. Increased extracellular serotonin level in rat hippocampus induced by chronic citalopram is augmented by subchronic lithium: neurochemical and behavioural studies in the rat. Psychopharmacology (Berl) 2003;166:188–94.

    CAS  Google Scholar 

  95. Mague SM, Pliakas AM, Todtenkopf MS, Tomasiewicz HC, Zhang Y, Stevens WC, Jones RM, Portoghese PS, Carlezon Jr. WA. Antidepressant-like effects of α-opioid receptor antagonists in the forced swim test in rats. J Pharmacol ExpTher 2003;305:1–8.

    Google Scholar 

  96. Carlezon Jr WA, Beguin C, DiNieri J, Baumann MH, Richards M, Todtenkopf MS, Rothman RB, Ma Z, Lee DY-L, Cohen BM. Depressive-like effects of the κ-opioid receptor agonist Salvinorin A on behavior and neurochemistry in rats. J Pharmacol Exp Ther 2006;314:440–7.

    Google Scholar 

  97. O’Donnell KC, Gould TD. The behavioral actions of lithium in rodent models: leads to develop novel therapeutics. Neurosci Biobehav Rev 2007;31:932–62.

    Article  PubMed  CAS  Google Scholar 

  98. Mac Donald R L, Rogers C J, Twyman R E. Barbiturate regulation of kinetic properties of the GABAA receptor channel of mouse spinal neurons in culture. J Physiol 1989;417:483–500.

    CAS  Google Scholar 

  99. Post RM, Uhde TW, Roy-Byrne PP, Joffe RT. Antidepressant effects of carbamazepine. Am J Psychiatry 1986;143:29–34.

    PubMed  CAS  Google Scholar 

  100. Post RM, Weiss SR, Chuang DM. Mechanisms of action of anticonvulsants in affective disorders: comparisons with lithium. J Clin Psychopharmacol. 1992;12:23S–35S.

    Article  PubMed  CAS  Google Scholar 

  101. Bourin M, Masse F, Hascoët M. Evidence for the activity of lamotrigine at 5-HT1A receptors in the mouse forced swimming test. J PsychiatryNeurosci 2005;30:275–82.

    Google Scholar 

  102. Leach MJ, Marden CM, Miller AA. Pharmacological studies of lamotrigine, a novel potential antipsychotic drug: neurochemical and clinical studies of the mechanism of action. Epilepsia 1986;27:490–7.

    Article  PubMed  CAS  Google Scholar 

  103. Kuo CC, Lu L. Characterization of lamotrigine inhibition of Na+ channels in rat hippocampal neurons. Br J Pharmacol 1997;121:1231–38.

    Article  PubMed  CAS  Google Scholar 

  104. Lizasoain I, Knowles RG, Moncada S. Inhibition by lamotrigine of the generation of nitric oxide in rat forebrain slices. J Neurochem 1995;64:636–42.

    Article  PubMed  CAS  Google Scholar 

  105. Prica C, Hascoët M, Bourin M. Antidepressant-like effect of lamotrigine is reversed by veratrine: a possible role of sodium channels in bipolar depression. Behav Brain Res. 2008;191:49–54.

    Article  PubMed  CAS  Google Scholar 

  106. Renard CE, Dailly E, David DJ, Hascoët M, Bourin M. Neurochemical changes following the mouse forced swimming test but not the tail suspension test. Fundam Clin Pharmacol 2003;17:449–55.

    Article  PubMed  CAS  Google Scholar 

  107. Cooper BR, Hester TJ, Maxwell RA. Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo. J Pharmacol Exp Ther 1980;215:127–34.

    PubMed  CAS  Google Scholar 

  108. Meyer JH, Goulding VS, Wilson AA, Hussey D, Christensen B.K, Houle S. Bupropion occupancy of the dopamine transporter is low during clinical treatment. Psychopharmacology (Berl) 2002;163:102–05.

    Article  CAS  Google Scholar 

  109. Dong J and Blier P. Modification of norepinephrine and serotonin, but not dopamine, neuron firing by sustained bupropion treatment. Psychopharmacology (Berl) 2001;155:52–7.

    Article  Google Scholar 

  110. Wong ML, Licinio J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 2002;3:136–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hascoët, M., Bourin, M. (2009). The Forced Swimming Test in Mice: A Suitable Model to Study Antidepressants. In: Gould, T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 42. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-303-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-303-9_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-302-2

  • Online ISBN: 978-1-60761-303-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics