Skip to main content

Mice Models for the Manic Pole of Bipolar Disorder

  • Protocol
  • First Online:
Mood and Anxiety Related Phenotypes in Mice

Part of the book series: Neuromethods ((NM,volume 42))

Abstract

The lack of appropriate animal models for bipolar disorder (BPD) is a major factor hindering the research of  its pathophysiology and the development of new drug treatments. One approach for the development of better models for the disorder is to separately model a number of its critical behavioral domains. In line with this approach, the current chapter describes a number of tests, which have been validated in the context of mania in Black Swiss mice. These tests include sweet-solution preference test, representing reward seeking (see Protocol 2), resident–intruder test, representing aggression/intrusion (see Protocol 3), and a variation of the forced-swim test, representing increased vigor and resistance to despair (see Protocol 4). The chapter also include a protocol for assessing spontaneous activity (see Protocol 1), since this test is critical for the interpretation of results from the other tests. It is suggested that these tests can be used independently for the study of different domains of the manic pole of BPD, and that pending further validation, they could be integrated into a coherent and continuous test battery that may also include tests for additional domains of BPD. The use of tests for distinct domains of BPD, either separately or as a continuous battery, can potentially be utilized to screen new drug treatments, to distinguish between specific effects of drugs and to explore the mechanisms underlying mania and BPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    is significant to the text.

  2. 2.

    is not significant to the text.

References

  1. Gould TD, Einat H. Animal models of bipolar disorder and mood stabilizer efficacy: a critical need for improvement. Neurosci Biobehav Rev 2007;31(6):825–31.

    Article  PubMed  CAS  Google Scholar 

  2. Hasler G, Drevets WC, Gould TD, Gottesman, II, Manji HK. Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 2006;60(2):93–105. Epub 2006 Jan 9.

    Google Scholar 

  3. Machado-Vieira R, Kapczinski F, Soares JC. Perspectives for the development of animal models of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2004;28(2):209–24.

    Article  PubMed  Google Scholar 

  4. Antelman SM, Caggiula AR, Kucinski BJ, et al. The effects of lithium on a potential cycling model of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 1998;22(3):495–510.

    Article  PubMed  CAS  Google Scholar 

  5. Antelman SM, Caggiula AR, Kiss S, Edwards DJ, Kocan D, Stiller R. Neurochemical and physiological effects of cocaine oscillate with sequential drug treatment: possibly a major factor in drug variability. Neuropsychopharmacology 1995;12(4):297–306.

    Article  PubMed  CAS  Google Scholar 

  6. Caggiula AR, Antelman SM, Kucinski BJ, et al. Oscillatory-sensitization model of repeated drug exposure: cocaine's effects on shock-induced hypoalgesia. Prog Neuropsychopharmacol Biol Psychiatry 1998;22(3):511–21.

    Article  PubMed  CAS  Google Scholar 

  7. Kucinski BJ, Antelman SM, Caggiula AR, Fowler H, Gershon S, Edwards DJ. Cocaine-induced oscillation is conditionable. Pharmacol Biochem Behav 1999;63(3):449–55.

    Article  PubMed  CAS  Google Scholar 

  8. Malatynska E, Knapp RJ. Dominant-submissive behavior as models of mania and depression. Neurosci Biobehav Rev 2005;29(4–5):715–37.

    Article  PubMed  Google Scholar 

  9. Le-Niculescu H, McFarland MJ, Ogden CA, et al. Phenomic, Convergent Functional Genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 2008;147B(2):134–66.

    Article  PubMed  Google Scholar 

  10. Borison RL, Sabelli HC, Maple PJ, Havdala HS, Diamond BI. Lithium prevention of amphetamine-induced 'manic' excitement and of reserpine-induced 'depression' in mice: possible role of 2-phenylethylamine. Psychopharmacology (Berl) 1978;59(3):259–62.

    Article  CAS  Google Scholar 

  11. Einat H, Shaldubina A, Bersudskey Y, Belmaker RH. Prospects for the Development of Animal Models for the Study of Bipolar Disorder. In: Soares JC, Young A, eds. Bipolar disorders: Basic Mechanisms and Therapeutic Implications. 2nd ed. New York: Taylor & Francis; 2007.

    Google Scholar 

  12. Gould TD, O'Donnell KC, Picchini AM, Manji HK. Strain differences in lithium attenuation of d-amphetamine-induced hyperlocomotion: a mouse model for the genetics of clinical response to lithium. Neuropsychopharmacology 2007;32(6):1321–33.

    Article  PubMed  CAS  Google Scholar 

  13. Anand A, Verhoeff P, Seneca N, et al. Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatry 2000;157(7):1108–14.

    Article  PubMed  CAS  Google Scholar 

  14. Murphy DL, Brodie HK, Goodwin FK, Bunney WE, Jr. Regular induction of hypomania by L-dopa in “bipolar” manic-depressive patients. Nature 1971;229(5280):135–6.

    Article  PubMed  CAS  Google Scholar 

  15. Huey LY, Janowsky DS, Judd LL, Abrams A, Parker D, Clopton P. Effects of lithium carbonate on methylphenidate-induced mood, behavior, and cognitive processes. Psychopharmacology (Berl) 1981;73(2):161–4.

    Article  CAS  Google Scholar 

  16. Van Kammen DP, Murphy DL. Attenuation of the euphoriant and activating effects of d- and l-amphetamine by lithium carbonate treatment. Psychopharmacologia 1975;44(3):215–24.

    Article  PubMed  Google Scholar 

  17. Cormier E. Attention deficit/hyperactivity disorder: a review and update. J Pediatr Nurs 2008;23(5):345–57. Epub 2008 Jun 20.

    Google Scholar 

  18. Ebstein RP, Eliashar S, Belmaker RH, Ben-Uriah Y, Yehuda S. Chronic lithium treatment and dopamine-mediated behavior. Biol Psychiatry 1980;15(3):459–67.

    PubMed  CAS  Google Scholar 

  19. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 2001;156(2–3):117–54.

    Article  CAS  Google Scholar 

  20. Peleg-Raibstein D, Knuesel I, Feldon J. Amphetamine sensitization in rats as an animal model of schizophrenia. Behav Brain Res 2008;191(2):190–201. Epub 2008 Apr 8.

    Google Scholar 

  21. Nestler EJ, Gould E, Manji H, et al. Preclinical models: status of basic research in depression. Biol Psychiatry 2002;52(6):503–28.

    Article  PubMed  Google Scholar 

  22. Tecott LH, Nestler EJ. Neurobehavioral assessment in the information age. Nat Neurosci 2004;7(5):462–6.

    Article  PubMed  CAS  Google Scholar 

  23. Einat H. Modelling facets of mania–new directions related to the notion of endophenotypes. J Psychopharmacol 2006;20(5):714–22. Epub 2006 Jan 9.

    Google Scholar 

  24. Einat H. Establishment of a battery of simple models for facets of bipolar disorder: a practical approach to achieve increased validity, better screening and possible insights into endophenotypes of disease. Behav Genet 2007;37(1):244–55. Epub 2006 Jul 22.

    Google Scholar 

  25. Einat H. Different behaviors and different strains: potential new ways to model bipolar disorder. Neurosci Biobehav Rev 2007;31(6):850–7.

    Article  PubMed  Google Scholar 

  26. Flaisher-Grinberg S, Overgaard S, Einat H. Attenuation of high sweet solution preference by mood stabilizers: a possible mouse model for the increased reward-seeking domain of mania. Journal of Neuroscience Methods 2009;177:44–50.

    Google Scholar 

  27. Flaisher-Grinberg S, Kronfeld-Schor N, Einat H. Models of mania: from facets to domains and from animal models to model animals. J Psychopharmacol 2008;6:6.

    Google Scholar 

  28. Flaisher-Grinberg S, Overgaard S, Einat H. Strain-specific battery of tests for manic-like behavior in mice: implications for model development. Biological Psychiatry 2008;63(Supp 7):64S.

    Google Scholar 

  29. Gould TD, Gottesman, II. Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav 2006;5(2):113–9.

    Article  PubMed  CAS  Google Scholar 

  30. Cryan JF, Slattery DA. Animal models of mood disorders: Recent developments. Curr Opin Psychiatry 2007;20(1):1–7.

    Article  PubMed  Google Scholar 

  31. McKinney WT. Overview of the past contributions of animal models and their changing place in psychiatry. Semin Clin Neuropsychiatry 2001;6(1):68–78.

    Article  PubMed  CAS  Google Scholar 

  32. Cousins DA, Young AH. The armamentarium of treatments for bipolar disorder: a review of the literature. Int J Neuropsychopharmacol 2007;10(3):411–31.

    Article  PubMed  CAS  Google Scholar 

  33. Einat H, Manji HK, Belmaker RH. New approaches to modeling bipolar disorder. Psychopharmacol Bull 2003;37(1):47–63.

    PubMed  Google Scholar 

  34. Insel TR. From animal models to model animals. Biol Psychiatry 2007;62(12):1337–9.

    Article  PubMed  Google Scholar 

  35. Hiscock K, Linde J, Einat H. Black Swiss mice as a new animal model for mania: a preliminary study. Journal of Medical and Biological Sciences 2007;1(2).

    Google Scholar 

  36. Mathew SJ, Manji HK, Charney DS. Novel drugs and therapeutic targets for severe mood disorders. Neuropsychopharmacology 2008;33(9):2080–92.

    Article  PubMed  CAS  Google Scholar 

  37. Willner P. The validity of animal models of depression. Psychopharmacology (Berl) 1984;83(1):1–16.

    Article  CAS  Google Scholar 

  38. Pierce RC, Kalivas PW. Locomotor behavior. Curr Protoc Neurosci 2007;Chapter(8):Unit 8.1.

    Google Scholar 

  39. Eilam D, Szechtman H. Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur J Pharmacol 1989;161(2–3):151–7.

    Article  PubMed  CAS  Google Scholar 

  40. Shaldubina A, Einat H, Szechtman H, Shimon H, Belmaker RH. Preliminary evaluation of oral anticonvulsant treatment in the quinpirole model of bipolar disorder. J Neural Transm 2002;109(3):433–40.

    Article  PubMed  CAS  Google Scholar 

  41. Heffner TG, Downs DA, Meltzer LT, Wiley JN, Williams AE. CI-943, a potential antipsychotic agent. I. Preclinical behavioral effects. J Pharmacol Exp Ther 1989;251(1):105–12.

    PubMed  CAS  Google Scholar 

  42. Belmaker RH, Elami A, Bannet J. Intermittent treatment with droperidol, a short-acting neuroleptic, increases behavioral dopamine receptor sensitivity. Psychopharmacology Suppl 1985;2:194–9.

    Article  PubMed  CAS  Google Scholar 

  43. Szechtman H, Ornstein K, Teitelbaum P, Golani I. Snout contact fixation, climbing and gnawing during apomorphine stereotypy in rats from two substrains. Eur J Pharmacol 1982;80(4):385–92.

    Article  PubMed  CAS  Google Scholar 

  44. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl) 1987;93(3):358–64.

    Article  CAS  Google Scholar 

  45. Papp M, Moryl E, Willner P. Pharmacological validation of the chronic mild stress model of depression. Eur J Pharmacol 1996;296(2):129–36.

    Article  PubMed  CAS  Google Scholar 

  46. Willner P, Moreau JL, Nielsen CK, Papp M, Sluzewska A. Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight. Physiol Behav 1996;60(1):129–34.

    Article  PubMed  CAS  Google Scholar 

  47. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 1997;134(4):319–29.

    Article  CAS  Google Scholar 

  48. Molander A, Soderpalm B. Glycine receptors regulate dopamine release in the rat nucleus accumbens. Alcohol Clin Exp Res 2005;29(1):17–26.

    Article  PubMed  CAS  Google Scholar 

  49. Sadock J, Kaplan H. Synopsis of Psychiatry. 9 ed: Lippincott & Williams; 2002.

    Google Scholar 

  50. Brightwell DR, Halmi KA, Finn R. Lithium-induced polydipsia and polyuria: mechanism of action? Biol Psychiatry 1973;7(2):167–71.

    PubMed  CAS  Google Scholar 

  51. Guaiana G, Eyrek C, Mariconda G. Polydipsia with normal natremia induced by Valproic Acid. Aust N Z J Psychiatry 2006;40(9):815–6.

    Article  PubMed  Google Scholar 

  52. Mailman RB. Lithium-induced polydipsia: dependence on nigrostriatal dopamine pathway and relationship to changes in the renin-angiotensin system. Psychopharmacology (Berl) 1983;80(2):143–9.

    Article  CAS  Google Scholar 

  53. Takeda A, Tamano H, Kan F, Hanajima T, Yamada K, Oku N. Enhancement of social isolation-induced aggressive behavior of young mice by zinc deficiency. Life Sci 2008;82(17–18):909–14. Epub 2008 Feb 23.

    Google Scholar 

  54. Frye CA, Rhodes ME, Walf A, Harney JP. Testosterone enhances aggression of wild-type mice but not those deficient in type I 5alpha-reductase. Brain Res 2002;948(1–2):165–70.

    Article  PubMed  CAS  Google Scholar 

  55. Miczek KA, O'Donnell JM. Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and L-dopa. Psychopharmacology (Berl) 1978;57(1):47–55.

    Article  CAS  Google Scholar 

  56. Miczek KA, Maxson SC, Fish EW, Faccidomo S. Aggressive behavioral phenotypes in mice. Behav Brain Res 2001;125(1–2):167–81.

    Article  PubMed  CAS  Google Scholar 

  57. Abramov U, Puussaar T, Raud S, Kurrikoff K, Vasar E. Behavioural differences between C57BL/6 and 129S6/SvEv strains are reinforced by environmental enrichment. Neurosci Lett 2008;443(3):223–7. Epub 2008 Aug 5.

    Google Scholar 

  58. Vishnivetskaya GB, Skrinskaya JA, Seif I, Popova NK. Effect of MAO A deficiency on different kinds of aggression and social investigation in mice. Aggress Behav 2007;33(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  59. Ashkenazy T, Einat H, Kronfeld-Schor N. We are in the dark here: induction of depression- and anxiety-like behaviours in the diurnal fat sand rat, by short daylight or melatonin injections. Int J Neuropsychopharmacol 2008;17:1–11.

    Google Scholar 

  60. Erhardt A, Muller MB, Rodel A, et al. Consequences of chronic social stress on behaviour and vasopressin gene expression in the PVN of DBA/2OlaHsd mice–influence of treatment with the CRHR1-antagonist R121919/NBI 30775. J Psychopharmacol 2008;30:30.

    Google Scholar 

  61. Haw C, Stubbs J. A survey of the off-label use of mood stabilizers in a large psychiatric hospital. J Psychopharmacol 2005;19(4):402–7.

    Article  PubMed  Google Scholar 

  62. Hellings JA, Weckbaugh M, Nickel EJ, et al. A double-blind, placebo-controlled study of valproate for aggression in youth with pervasive developmental disorders. J Child Adolesc Psychopharmacol 2005;15(4):682–92.

    Article  PubMed  Google Scholar 

  63. Krsiak M, Sulcova A, Tomasikova Z, Dlohozkova N, Kosar E, Masek K. Drug effects on attack defense and escape in mice. Pharmacol Biochem Behav 1981;14(Suppl 1):47–52.

    PubMed  CAS  Google Scholar 

  64. Oehler J, Jahkel M, Schmidt J. The influence of chronic treatment with psychotropic drugs on behavioral changes by social isolation. Pol J Pharmacol Pharm 1985;37(6):841–9.

    PubMed  CAS  Google Scholar 

  65. Sheard MH. Aggressive behavior: Modification by amphetamine, p-chlorophenylalanine and lithium in rats. Agressologie 1973;14(5):327–30.

    PubMed  CAS  Google Scholar 

  66. Sheard MH. Lithium in the treatment of aggression. J Nerv Ment Dis 1975;160(2–1):108-18.

    PubMed  CAS  Google Scholar 

  67. Simler S, Puglisi-Allegra S, Mandel P. Effects of n-di-propylacetate on aggressive behavior and brain GABA level in isolated mice. Pharmacol Biochem Behav 1983;18(5):717–20.

    Article  PubMed  CAS  Google Scholar 

  68. Bhatnagar S, Vining C. Facilitation of hypothalamic-pituitary-adrenal responses to novel stress following repeated social stress using the resident/intruder paradigm. Horm Behav 2003;43(1):158–65.

    Article  PubMed  CAS  Google Scholar 

  69. Bourin M, Redrobe JP, Hascoet M, Baker GB, Colombel MC. A schematic representation of the psychopharmacological profile of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 1996;20(8):1389–402.

    Article  PubMed  CAS  Google Scholar 

  70. Cleary C, Linde JA, Hiscock KM, et al. Antidepressive-like effects of rapamycin in animal models: Implications for mTOR inhibition as a new target for treatment of affective disorders. Brain Res Bull 2008;76(5):469–73. Epub 2008 Apr 3.

    Google Scholar 

  71. Einat H, Karbovski H, Korik J, Tsalah D, Belmaker RH. Inositol reduces depressive-like behaviors in two different animal models of depression. Psychopharmacology (Berl) 1999;144(2):158–62.

    Article  CAS  Google Scholar 

  72. Einat H, Clenet F, Shaldubina A, Belmaker RH, Bourin M. The antidepressant activity of inositol in the forced swim test involves 5-HT(2) receptors. Behav Brain Res 2001;118(1):77–83.

    Article  PubMed  CAS  Google Scholar 

  73. O'Brien WT, Harper AD, Jove F, et al. Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J Neurosci 2004;24(30):6791–8.

    Article  PubMed  Google Scholar 

  74. Porsolt RD, Deniel M, Jalfre M. Forced swimming in rats: hypothermia, immobility and the effects of imipramine. Eur J Pharmacol 1979;57(4):431–6.

    Article  PubMed  CAS  Google Scholar 

  75. Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M. Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 1979;57(2–3):201–10.

    Article  PubMed  CAS  Google Scholar 

  76. Porsolt RD, Bertin A, Jalfre M. “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 1978;51(3):291–4.

    Article  PubMed  CAS  Google Scholar 

  77. Porsolt RD. Animal models of depression: utility for transgenic research. Rev Neurosci 2000;11(1):53–8.

    PubMed  CAS  Google Scholar 

  78. Akiskal HS, Kilzieh N, Maser JD, et al. The distinct temperament profiles of bipolar I, bipolar II and unipolar patients. J Affect Disord 2006;92(1):19–33. Epub 2006 Apr 25.

    Google Scholar 

  79. Maremmani I, Akiskal HS, Signoretta S, Liguori A, Perugi G, Cloninger R. The relationship of Kraepelian affective temperaments (as measured by TEMPS-I) to the tridimensional personality questionnaire (TPQ). J Affect Disord 2005;85(1–2):17–27.

    Article  PubMed  CAS  Google Scholar 

  80. Bersudsky Y, Shaldubina A, Belmaker RH. Lithium's effect in forced-swim test is blood level dependent but not dependent on weight loss. Behav Pharmacol 2007;18(1):77–80.

    Article  PubMed  CAS  Google Scholar 

  81. Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 2005;29(4–5):547–69.

    Article  PubMed  CAS  Google Scholar 

  82. Shimamura M, Kobayashi T, Kuratani K, Kinoshita M. Optimized analysis of the forced swim test using an automated experimental system: Detailed time course study in mice. J Pharmacol Toxicol Methods 2007;11:11.

    Google Scholar 

  83. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977;229(2):327–36.

    PubMed  CAS  Google Scholar 

  84. Frey BN, Valvassori SS, Reus GZ, et al. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 2006;31(5):326–32.

    PubMed  Google Scholar 

  85. Engel SR, Creson TK, Hao Y, et al. The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Mol Psychiatry 2008;29:29.

    Google Scholar 

  86. Beaulieu JM, Sotnikova TD, Yao WD, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 2004;101(14):5099–104. Epub 2004 Mar 24.

    Google Scholar 

  87. Einat H, Yuan P, Szabo ST, Dogra S, Manji HK. Protein Kinase C Inhibition by Tamoxifen Antagonizes Manic-Like Behavior in Rats: Implications for the Development of Novel Therapeutics for Bipolar Disorder. Neuropsychobiology 2007;55(3–4):123–31.

    Article  PubMed  CAS  Google Scholar 

  88. Maj J, Chojnacka-Wojcik E, Lewandowska A, Tatarczynska E, Wiczynska B. The central action of carbamazepine as a potential antidepressant drug. Pol J Pharmacol Pharm 1985;37(1):47–56.

    PubMed  CAS  Google Scholar 

  89. Renwart N, Frances H, Simon P. The calcium entry blockers: anti-manic drugs? Prog Neuropsychopharmacol Biol Psychiatry 1986;10(6):717–22.

    Article  PubMed  CAS  Google Scholar 

  90. Vanover KE. Effects of AMPA receptor antagonists on dopamine-mediated behaviors in mice. Psychopharmacology (Berl) 1998;136(2):123–31.

    Article  CAS  Google Scholar 

  91. Cox C, Harrison-Read PE, Steinberg H, Tomkiewicz M. Lithium attenuates drug-induced hyperactivity in rats. Nature 1971;232(5309):336–8.

    Article  PubMed  CAS  Google Scholar 

  92. Berggren U, Tallstedt L, Ahlenius S, Engel J. The effect of lithium on amphetamine-induced locomotor stimulation. Psychopharmacology (Berl) 1978;59(1):41–5.

    Article  CAS  Google Scholar 

  93. Agmo A, Medrano A, Garrido N, Alonso P. GABAergic drugs inhibit amphetamine-induced distractibility in the rat. Pharmacol Biochem Behav 1997;58(1):119–26.

    Article  PubMed  CAS  Google Scholar 

  94. Hiscock KM, Linde JA, Einat H. Black Swiss mice as a new animal model for mania: a preliminary study. Journal of Medical and Biological Sciences 2007;1(2).

    Google Scholar 

  95. Antoniou K, Kafetzopoulos E, Papadopoulou-Daifoti Z, Hyphantis T, Marselos M. D-amphetamine, cocaine and caffeine: a comparative study of acute effects on locomotor activity and behavioural patterns in rats. Neurosci Biobehav Rev 1998;23(2):189–96.

    Article  PubMed  CAS  Google Scholar 

  96. Crawley JN. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 1999;835(1):18–26.

    Article  PubMed  CAS  Google Scholar 

  97. Crawley JN. What's wrong with my mouse? behavioral phenotyping of transgenic and knockout Mice. 1 ed. New York: Wiley-Liss; 2000.

    Google Scholar 

  98. Connor TJ, Kelly JP, Leonard BE. Forced swim test-induced endocrine and immune changes in the rat: effect of subacute desipramine treatment. Pharmacol Biochem Behav 1998;59(1):171–7.

    Article  PubMed  CAS  Google Scholar 

  99. Porsolt RD, Brossard G, Hautbois C, Roux S. Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci 2001;Chapter(8):Unit 8.10A.

    Google Scholar 

  100. Cabib S. Strain-dependent behavioural sensitization to amphetamine: role of environmental influences. Behav Pharmacol 1993;4(4):367–74.

    PubMed  CAS  Google Scholar 

  101. Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 1991;16(3):223–44.

    Article  PubMed  CAS  Google Scholar 

  102. Steckler T, Holsboer F. Conditioned activity to amphetamine in transgenic mice expressing an antisense RNA against the glucocorticoid receptor. Behav Neurosci 2001;115(1):207–19.

    Article  PubMed  CAS  Google Scholar 

  103. Bowling SL, Bardo MT. Locomotor and rewarding effects of amphetamine in enriched, social, and isolate reared rats. Pharmacol Biochem Behav 1994;48(2):459–64.

    Article  PubMed  CAS  Google Scholar 

  104. Hall FS, Huang S, Fong GW, Pert A, Linnoila M. Effects of isolation-rearing on voluntary consumption of ethanol, sucrose and saccharin solutions in Fawn Hooded and Wistar rats. Psychopharmacology (Berl) 1998;139(3):210–6.

    Article  CAS  Google Scholar 

  105. Lister RG, Hilakivi LA. The effects of novelty, isolation, light and ethanol on the social behavior of mice. Psychopharmacology (Berl) 1988;96(2):181–7.

    Article  CAS  Google Scholar 

  106. Malkesman O, Maayan R, Weizman A, Weller A. Aggressive behavior and HPA axis hormones after social isolation in adult rats of two different genetic animal models for depression. Behav Brain Res 2006;175(2):408–14. Epub 2006 Oct 27.

    Google Scholar 

  107. Lutter M, Krishnan V, Russo SJ, Jung S, McClung CA, Nestler EJ. Orexin signaling mediates the antidepressant-like effect of calorie restriction. J Neurosci 2008;28(12):3071–5.

    Article  PubMed  CAS  Google Scholar 

  108. Bai F, Li X, Clay M, Lindstrom T, Skolnick P. Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav 2001;70(2–3):187–92.

    Article  PubMed  CAS  Google Scholar 

  109. Einat H. Chronic oral administration of ginseng extract results in behavioral change but has no effects in mice models of affective and anxiety disorders. Phytother Res 2007;21(1):62–6.

    Article  PubMed  CAS  Google Scholar 

  110. Lucki I, Dalvi A, Mayorga AJ. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 2001;155(3):315–22.

    Article  CAS  Google Scholar 

  111. Whirley BK, Einat H. Taurine trials in animal models offer no support for anxiolytic, antidepressant or stimulant effects. Isr J Psychiatry Relat Sci 2008;45(1):11–8.

    PubMed  Google Scholar 

  112. Yoshikawa T, Watanabe A, Ishitsuka Y, Nakaya A, Nakatani N. Identification of multiple genetic loci linked to the propensity for “behavioral despair” in mice. Genome Res 2002;12(3):357–66.

    Article  PubMed  CAS  Google Scholar 

  113. Einat H, Yuan P, Manji HK. Increased anxiety-like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bcl-2 gene: Further support for the involvement of mitochondrial function in anxiety disorders. Behav Brain Res 2005;165(2):172–80.

    Article  PubMed  CAS  Google Scholar 

  114. Kroczka B, Branski P, Palucha A, Pilc A, Nowak G. Antidepressant-like properties of zinc in rodent forced swim test. Brain Res Bull 2001;55(2):297–300.

    Article  PubMed  CAS  Google Scholar 

  115. Popik P, Kos T, Sowa-Kucma M, Nowak G. Lack of persistent effects of ketamine in rodent models of depression. Psychopharmacology (Berl) 2008;198(3):421–30. Epub 2008 May 7.

    Google Scholar 

  116. Karolewicz B, Paul IA, Antkiewicz-Michaluk L. Effect of NOS inhibitor on forced swim test and neurotransmitters turnover in the mouse brain. Pol J Pharmacol 2001;53(6):587–96.

    PubMed  CAS  Google Scholar 

  117. Kochanowska AJ, Rao KV, Childress S, et al. Secondary metabolites from three Florida sponges with antidepressant activity. J Nat Prod 2008;71(2):186–9. Epub 2008 Jan 25.

    Google Scholar 

Download references

Acknowledgements

The studies described in this chapter were supported by a NARSAD Independent Investigator Award to HE.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Flaisher-Grinberg, S., Einat, H. (2009). Mice Models for the Manic Pole of Bipolar Disorder. In: Gould, T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 42. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-303-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-303-9_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-302-2

  • Online ISBN: 978-1-60761-303-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics