Skip to main content

Live Imaging of Neural Cell Functions

  • Protocol
  • First Online:
Protocols for Neural Cell Culture

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2542 Accesses

Abstract

To determine the cell autonomous and environmental factors that control the differentiation of neurons, astrocytes, and oligodendrocytes, we have used neurospheres made of primary neural progenitor cells. These organoids are amenable to the live cell imaging of several parameters which are central to the proper control of neuron and glial cell differentiation, as well as to the function of the resulting fully differentiated neural cells. Here we report on the methods to study in living cells the connexin-dependent cell-to-cell coupling, the oscillations in intracellular Ca2+, and specifically the intercellular synchronization of such events, and the ATP release by either exocytosis of vesicles or through specialized membrane channels. The methods rely on the combination of a variety of state-of-the art microscopy and biophysical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reynolds, BA, Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255:1707–10.

    Article  CAS  PubMed  Google Scholar 

  2. Duval N, Gomes D, Calaora V et al. Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells. J Cell Sci 2002; 115: 3241–51.

    CAS  PubMed  Google Scholar 

  3. Scemes E, Duval N, Meda P. Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci. 2003; 23:11444–52.

    CAS  PubMed  Google Scholar 

  4. Striedinger K, Meda P, Scemes E. Exocytosis of ATP from astrocyte progenitors modulates spontaneous Ca2+ oscillations and cell migration. Glia. 2007; 55:652–62.

    Article  PubMed  Google Scholar 

  5. Bittar EE, Hertzberg EL, (eds). Gap Junctions, Adv Mol Cell Biol 2000:1–407

    Google Scholar 

  6. Shestopalov VI, Panchin Y. Pannexins and gap junction protein diversity. Cell Mol Life Sci. 2008; 65:376–94.

    Article  CAS  PubMed  Google Scholar 

  7. Söhl G, Maxeiner S, Willecke K. Expression and functions of neuronal gap junctions. Nat Rev Neurosci. 2005; 6:191–200.

    Article  PubMed  CAS  Google Scholar 

  8. Lai-Cheong JE, Arita K, McGrath JA. Genetic diseases of junctions. J Invest Dermatol. 2007; 127:2713–25.

    Article  CAS  PubMed  Google Scholar 

  9. Mas C, Taske N, Deutsch S et al. Association of the connexin36 gene with juvenile myoclonic epilepsy. J Med Genet. 2004; 41:e93–98.

    Article  Google Scholar 

  10. Parri HR, Crunelli V. The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations. Neuroscience. 2003; 120:979–92.

    Article  CAS  PubMed  Google Scholar 

  11. Beck H, Yaari Y. Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci. 2008; 9:357–69.

    Article  CAS  PubMed  Google Scholar 

  12. Iino M. Identification of new functions of Ca2+ release from intracellular stores in central nervous system. Biochem Biophys Res Commun. 2008; 369:220–4.

    Article  CAS  PubMed  Google Scholar 

  13. Scemes E, Giaume C. Astrocyte calcium waves: what they are and what they do.Glia. 2006; 54:716–25.

    Article  PubMed  Google Scholar 

  14. Scemes E. Components of astrocytic intercellular calcium signaling. Mol Neurobiol. 2000; 22:167–79.

    Article  CAS  PubMed  Google Scholar 

  15. Spray DC, Ye ZC, Ransom BR. Functional connexin “hemichannels”: a critical appraisal.Glia. 2006; 54:758–73.

    Article  PubMed  Google Scholar 

  16. Bruzzone R and Giaume C (eds). Connexin methods and Protocols. Humana Press, Totowa, USA. 2001:1–491.

    Google Scholar 

  17. Harris AW. Emerging issues of connexin channels: biophysics fills the gap. Quart Rev Biophys 2001; 34: 325–472.

    CAS  Google Scholar 

  18. Charpantier E, Cancela J, Meda P. Beta cells preferentially exchange cationic molecules via connexin36 gap junction channels. Diabetologia. 2007; 50:2332–41.

    Article  CAS  PubMed  Google Scholar 

  19. Stewart WW. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 1978; 14:741–59.

    Article  CAS  PubMed  Google Scholar 

  20. Socolar SJ, Loewenstein WR. Methods for studying transmission through permeable cell-to-cell junctions. Methods Membr. Biol. 1979; 10:123–79.

    CAS  Google Scholar 

  21. Peinado A, Yuste R, Katz LC Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 1993; 10:103–14.

    Article  CAS  PubMed  Google Scholar 

  22. Blomstrand F, Giaume C. Kinetics of endothelin-induced inhibition and glucose permeability of astrocyte gap junctions.J Neurosci Res. 2006; 83:996–1003.

    Article  CAS  PubMed  Google Scholar 

  23. Caton D, Calabrese A, Mas C et al. Lentivirus-mediated transduction of connexin cDNAs shows level – and isoform-specific alterations in insulin secretion of primary pancreatic beta-cells. J Cell Sci. 2003; 116:2285–94.

    Article  CAS  PubMed  Google Scholar 

  24. Cohen-Salmon M, Regnault B, Cayet N et al. Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci U S A. 2007; 104:6229–34.

    Article  CAS  PubMed  Google Scholar 

  25. Ravier MA, Güldenagel M, Charollais A et al. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes. 2005; 54:1798–807.

    Article  CAS  PubMed  Google Scholar 

  26. Calabrese A, Zhang M, Serre-Beinier V et al., Connexin 36 controls synchronization of Ca2+ oscillations and insulin secretion in MIN6 cells. Diabetes. 2003; 52:417–24.

    Article  CAS  PubMed  Google Scholar 

  27. Kotlikoff MI. Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J Physiol. 2007; 578:55–67.

    Article  CAS  PubMed  Google Scholar 

  28. Simpson AW. Fluorescent measurement of [Ca2+]c: basic practical considerations. Methods Mol Biol. 2006; 312:3–36.

    PubMed  Google Scholar 

  29. Meldolesi J. The development of Ca2+ indicators: a breakthrough in pharmacological research. Trends Pharmacol Sci. 2004; 25:172–4.

    Article  CAS  PubMed  Google Scholar 

  30. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985; 260:3440–50.

    CAS  PubMed  Google Scholar 

  31. Minta A, Kao JP, Tsien RY. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem. 1989; 264:8171–8.

    CAS  PubMed  Google Scholar 

  32. Harkins AB, Kurebayashi N, Baylor SM. Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3. Biophys J. 1993; 65:865–81.

    Article  CAS  PubMed  Google Scholar 

  33. Kao JP. Practical aspects of measuring [Ca2+] with fluorescent indicators. Methods Cell Biol. 1994; 40:155–81.

    Article  CAS  PubMed  Google Scholar 

  34. Lambert, D. Calcium Signaling Protocols. Methods in Molecular Biology, Humana Press 1999; 114:125–33

    Google Scholar 

  35. Miyawaki, A, Llopis, J, Heim, R. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 1997; 388:882–87.

    Article  CAS  PubMed  Google Scholar 

  36. Nagai T, Yamada S, Tominaga T et al. Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 2004; 101:10554–59.

    Article  CAS  PubMed  Google Scholar 

  37. Wood KV, Lam YA, McElroy WD. Introduction to beetle luciferases and their applications. J Biolumin Chemilumin. 1989; 4:289–301.

    Article  CAS  PubMed  Google Scholar 

  38. Gould SJ, Subramani S. Firefly luciferase as a tool in molecular and cell biology. Anal Biochem. 1988; 175:5–13.

    Article  CAS  PubMed  Google Scholar 

  39. Nichols WW, Curtis GD, Johnston HH. Choice of buffer anion for the assay of adenosine 5'-triphosphate using firefly luciferase. Anal Biochem. 1981; 114:396–7.

    Article  CAS  PubMed  Google Scholar 

  40. Axelrod D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 1981; 89:141–45.

    Article  CAS  Google Scholar 

  41. Smyth JW, Shaw RM. Visualizing ion channel dynamics at the plasma membrane. Heart Rhythm. 2008; 5(6 Suppl):S7–11

    Article  Google Scholar 

  42. Breckenridge LJ, Almers W. Final steps in exocytosis observed in a cell with giant secretory granules. Proc. Natl. Acad. Sci. USA 1987; 84: 1945–49.

    Article  CAS  PubMed  Google Scholar 

  43. Pralong WF, Bartley C, Wollheim CB. Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO J. 1990; 9:53–60.

    CAS  PubMed  Google Scholar 

  44. Coco S, Calegari F, Pravettoni E et al. Storage and release of ATP from astrocytes in culture. J. Biol. Chem. 2003; 278:1354–62.

    CAS  Google Scholar 

  45. Zimmerberg J, Curran M, Cohen FS et al. Simultenous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc. Natl. Acad. Sci. USA 1987; 84: 1585–89.

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Rao M. Glial progenitors in the CNS and possible lineage relationship among them. Biol. Cell 2004; 96: 279–90.

    CAS  Google Scholar 

  47. Liu Y, Wu Y, Lee JC. et al. Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia 2002; 40: 25–43.

    Article  PubMed  Google Scholar 

  48. Rao MS, Mayer-Proschel M. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev. Biol. 1977; 188: 48–63.

    Google Scholar 

Download references

Acknowledgments

Work of PM is supported by grants from the Swiss National Science Foundation (310000-122430), the Juvenile Diabetes Foundation International (1-2007-158), and the European Union (Betaimage FP7-222980; IMIDIA, IMI C-2008.T7). ES is funded by the NIH (NS052245).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bavamian, S., Scemes, E., Meda, P. (2009). Live Imaging of Neural Cell Functions. In: Doering, L. (eds) Protocols for Neural Cell Culture. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60761-292-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-292-6_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-291-9

  • Online ISBN: 978-1-60761-292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics