Skip to main content

Compound Library Design for Target Families

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 575))

Summary

Chemogenomics is a modern approach to analysis of the biological effect of a wide array of small molecule compounds on a large set of homologous receptors or other macromolecular drug targets. However, the relative productivity of the method and the extremely high-cost procedure jointly force the scientist to use additional computational tools for rational compound library design and selection. The present chapter will focus specifically on application of a predictive mapping computational technology in the context of the fundamental principles of chemogenomic approach to foster rational drug design and derive information from the simultaneous biological evaluation of multiple compounds on a set of coherent biological targets.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. http://www.prous.com.

  2. Olah, M., Mracec, M., Ostopovici, L., Rad, R., Bora, A., Hadaruga, N., Olah, I., Banda, M., Simon, Z., Mracec, M., and Oprea, T. I. (2004) WOMBAT: World of molecular bioactivity. In: Oprea, T. I. (ed.) Cheminformatics in Drug Discovery. Wiley-VCH, Weinheim, pp. 223–239.

    Google Scholar 

  3. Vanco, J. (2003) The Beilstein CrossFire Information System and its use in pharmaceutical chemistry. Ceska Slov. Farm. 52, 68–72.

    PubMed  CAS  Google Scholar 

  4. Ivanenkov, Y. A., Balakin, K. V., Skorenko, A. V., Tkachenko, S. E., Savchuk, N. P., Ivachtchenko, A. A., and Nikolsky Y. (2003) Application of advanced machine learning algorithm for profiling specific GPCR-active compounds. Chem. Today 21, 72–75.

    CAS  Google Scholar 

  5. http://www.cis.hut.fi.

  6. http://www.geocities.com.

  7. http://www.cis.hut.fi.

  8. http://www.informagenesis.com.

  9. http://www.nd.com.

  10. http://www.neurok.ru.

  11. Todeschini, R., Consonni, V., Mannhold, R., Kubinyi, H., and Timmerman, H. (2000) Handbook of Molecular Descriptors. Wiley, New York.

    Google Scholar 

  12. Kohonen, T. (1990) The self-organizing map. Proceedings of the IEEE 78, 1464–1480.

    Article  Google Scholar 

  13. Anzali, S., Gasteiger, J., Holzgrabe, U., Polanski, J., Sadowski, J., Teckentrup, A., and Wagener, M. (1998) The use of self-organizing neural networks in drug design. In: Kubinyi, H., Folkers, G., and Martin, Y. C. (eds.) 3D QSAR in Drug Design. Kluwer/ESCOM, Dordrecht, pp. 273–99.

    Google Scholar 

  14. Bauknecht, H., Zell, A., Bayer, H., Levi, P., Wagener, M., Sadowski, J., and Gasteiger, J. (1996) Locating biologically active compounds in medium-sized heterogeneous datasets by topological autocorrelation vectors: Dopamine and benzodiazepine agonists. J. Chem. Inf. Comput. Sci. 36, 1205–1213.

    Article  PubMed  CAS  Google Scholar 

  15. Anzali, S., Barnickel, G., Krug, M., Sadowski, J., Wagener, M., Gasteiger, J., and Polanski, J. (1996) The comparison of geometric and electronic properties of molecular surfaces by neural networks: Application to the analysis of corticosteroid binding globulin activity of steroids. J. Comput. Aided Mol. Des. 10, 521–534.

    Article  PubMed  CAS  Google Scholar 

  16. Brűstle, M., Beck, B., Schindler, T., King, W., Mitchell, T., and Clark, T. (2002) Descriptors, physical properties, and drug-likeness. J. Med. Chem. 45, 3345–3355.

    Article  PubMed  Google Scholar 

  17. Rabow, A. A., Shoemaker, R. H., Sausville, E. A., and Covell, D. G. (2002) Mining the National Cancer Institute’s tumor-screening database: Identification of compounds with similar cellular activities. J. Med. Chem. 45, 818–840.

    Article  PubMed  CAS  Google Scholar 

  18. Korolev, D., Balakin, K. V., Nikolsky, Y., Kirillov, E., Ivanenkov, Y. A., Savchuk, N. P., Ivashchenko, A. A., and Nikolskaya, T. (2003) Modeling of human cytochrome P450-mediated drug metabolism using unsupervised machine learning approach. J. Med. Chem. 46, 3631–3643.

    Article  PubMed  CAS  Google Scholar 

  19. Savchuk, N. P. (2003) In silico ADME-Tox as part of an optimization strategy. Curr. Drug Discov. 4, 17–22.

    Google Scholar 

  20. Kier, L. B., and Hall, L. H. (1986) Molecular Connectivity in Structure-Activity Analysis. Wiley, New York.

    Google Scholar 

  21. Basak, S. C., Balaban, A. T., Grunwald, G. D., and Gute, B. D. (2000) Topological indices: Their nature and mutual relatedness. J. Chem. Inf. Comput. Sci. 40, 891–898.

    Article  PubMed  CAS  Google Scholar 

  22. Bonchev, F. (2000) Overall connectivities/topological complexities: A new powerful tool for QSPR/QSAR. J. Chem. Inf. Comput. Sci. 40, 934–941.

    Article  PubMed  CAS  Google Scholar 

  23. Kubinyi, H. (1993) QSAR. Hansch Analysis and Related Approaches. In: Manhold, R., Krogsgaard-Larsen, P., and Timmermann, H. (eds.) Methods and Principles in Medicinal Chemistry, vol. 1. VCH, Weinheim, pp. 21–36.

    Google Scholar 

  24. Livingstone, D. J. (2000) The characterization of chemical structures using molecular properties. a survey. J. Chem. Inf. Comput. Sci. 40, 195–209.

    Article  PubMed  CAS  Google Scholar 

  25. Jolliffe, I. T. (1986) Principal Component Analysis. Springer-Verlag, New York.

    Google Scholar 

  26. Cooley, W., and Lohnes, P. (1971) Multivariate Data Analysis. Wiley, New York.

    Google Scholar 

  27. Clark, D. E., and Pickett, S. D. (2000) Computational methods for the prediction of ‘drug-likeness’. Drug Discov. Today 5, 49–58.

    Article  PubMed  CAS  Google Scholar 

  28. Oprea, T. I., Davis, A. M., Teague, S.J., and Leeson, P. D. (2001) Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 41, 1308–1315.

    Article  PubMed  CAS  Google Scholar 

  29. Klabunde, T. (2006) Chemogenomic approaches to ligand design. In: Rognan, D. (ed.) Ligand Design for G-protein-Coupled Receptors. Wiley-VCH, Weinheim, pp. 115–135.

    Chapter  Google Scholar 

  30. Rognan, D. (2007) Chemogenomic appro­aches to rational drug design. Br. J. Pharmacol. 152, 38–52.

    Article  PubMed  CAS  Google Scholar 

  31. Zlotnik, A., and Yoshie, O. (2000) Chemokines: A new classification system and their role in immunity. Immunity 12, 121–127.

    Article  PubMed  CAS  Google Scholar 

  32. Yoshie, O., Imai, T., and Nomiyama, H. (2001) Chemokines in immunity. Adv. Immunol. 78, 57–110.

    Article  PubMed  CAS  Google Scholar 

  33. Balakin, K. V., Ivanenkov, Y. A., Tkachenko, S. E., Kiselyov, A. S., and Ivachtchenko, A. V. (2008) Regulators of chemokine receptor activity as promising anticancer therapeutics. Curr. Cancer Drug Targets 8, 299–340.

    Article  PubMed  CAS  Google Scholar 

  34. Zlotnik, A., Yoshie, O., and Nomiyama, H. (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 7, 243.

    Article  PubMed  Google Scholar 

  35. Allavena, P., Marchesi, F., and Mantovani, A. (2005) The role of chemokines and their receptors in tumor progression and invasion: Potential new targets of biological therapy. Curr. Cancer Ther. Rev. 1, 81–92.

    Article  CAS  Google Scholar 

  36. Pérez-Nueno, V. I., Ritchie, D. W., Rabal, O., Pascual, R., Borrell, J. I., and Teixidó, J. (2008) Comparison of ligand-based and receptor-based virtual screening of HIV entry inhibitors for the CXCR4 and CCR5 receptors using 3D ligand shape matching and ligand-receptor docking. J. Chem. Inf. Model. 48, 509–533.

    Article  PubMed  Google Scholar 

  37. Spencer, E. H. (2005) Development of a Structure Prediction Method for G-Protein Coupled Receptors, Thesis. California Institute of Technology, Pasadena, CA.

    Google Scholar 

  38. Efremov, R., Truong, M. J., Darcissac, E. C., Zeng, J., Grau, O., Vergoten, G., Debard, C., Capron, A., and Bahr, G. M. (2001) Human chemokine receptors CCR5, CCR3 and CCR2B share common polarity motif in the first extracellular loop with other human G-protein coupled receptors. Eur. J. Biochem. 263, 746–756.

    Article  Google Scholar 

  39. http://www.ChemDiv.com.

  40. Torgerson, W. S. (1952) Multi-dimensional scaling: I. Theory and method. Psychometrika 17, 401–419.

    Article  Google Scholar 

  41. Kruskal, J. B. (1964) Non-metric multi-dimensional scaling: A numerical method. Psychometrika 29, 115–129.

    Article  Google Scholar 

  42. Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading.

    Google Scholar 

  43. Bigus, J. P. (1996) Data Mining with Neural Networks. McGraw-Hill, New York.

    Google Scholar 

  44. Kubinyi, H. (1994) Variable selection in QSAR studies. I. An evolutionary algorithm. Quant. Struct.-Act. Relat. 13, 285–294.1.Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 23, 3–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Balakin, K.V., Ivanenkov, Y.A., Savchuk, N.P. (2009). Compound Library Design for Target Families. In: Jacoby, E. (eds) Chemogenomics. Methods in Molecular Biology, vol 575. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-274-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-274-2_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-273-5

  • Online ISBN: 978-1-60761-274-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics