Skip to main content

QTL Mapping in Intercross and Backcross Populations

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 573))

Abstract

In the past two decades, various statistical approaches have been developed to identify quantitative trait locus with experimental organisms. In this chapter, we introduce several commonly used QTL mapping methods for intercross and backcross populations. Important issues related to QTL mapping, such as threshold and confidence interval calculations are also discussed. We list and describe five public domain QTL software packages commonly used by biologists.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sax, K. (1923) The association of size differences with seed-coat pattern and pigmentation Phaseolus Vulgaris. Genetics 8: 552–560.

    PubMed  CAS  Google Scholar 

  2. Lander, ES, Botstein, D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    PubMed  CAS  Google Scholar 

  3. Haley, CS, Knott, SA. (1992) A simple regression method for mapping quantitative trait in line crosses using flanking markers. Heredity 69: 315–324.

    Article  PubMed  CAS  Google Scholar 

  4. Kao, CH, Zeng, ZB. (1997) General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics 53, 653–665.

    Article  PubMed  CAS  Google Scholar 

  5. Kao, CH, Zeng, ZB, Teasdale, RD. (1999) Multiple interval mapping for quantitative trait loci. Genetics 152: 1203–1216.

    PubMed  CAS  Google Scholar 

  6. Zeng, ZB. (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Nat Acad Sci USA 90: 10972–10976.

    Article  PubMed  CAS  Google Scholar 

  7. Zeng, ZB. (1994) Precision mapping of quantitative traits loci. Genetics 136: 1457–1468.

    PubMed  CAS  Google Scholar 

  8. Jansen, RC, Stam, P. (1994) High resolution of quantitative traits into multiple quantitative trait in line crosses using flanking markers. Heredity 69: 315–324.

    Google Scholar 

  9. Satagopan, JM, Yandell, BS, Newton, MA, et al. (1996) A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144: 805–816.

    PubMed  CAS  Google Scholar 

  10. Sillanpää, MJ, Arjas, E. (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148: 1373–1388.

    PubMed  Google Scholar 

  11. Stephens, DA, Fisch, RD. (1998) Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo. Biometrics 54: 1334–1347.

    Article  Google Scholar 

  12. Yi, N, Xu, S. (2000) Bayesian mapping of quantitative trait loci for complex binary traits. Genetics 155: 1391–1403.

    PubMed  CAS  Google Scholar 

  13. Yi, N, Xu, S. (2001) Bayesian mapping of quantitative trait loci under complicated mating designs. Genetics 157: 1759–1771.

    PubMed  CAS  Google Scholar 

  14. Hoeschele, I. (2001) Mapping quantitative trait loci in outbred pedigrees. In: Balding, D, Bishop, M, Cannings, O, (eds) Handbook of Statistical Genetics, Wiley and Sons, New York, pp. 599–644.

    Google Scholar 

  15. Yi, N. (2004) A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics 167: 967–975.

    Article  PubMed  CAS  Google Scholar 

  16. Churchill, GA, Doerge, RW. (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.

    PubMed  CAS  Google Scholar 

  17. Zou, F, Fine, JP, Hu, J, et al. (2004) An efficient resampling method for assessing genome-wide statistical significance in mapping quantitative trait loci. Genetics 168: 2307–2316.

    Article  PubMed  CAS  Google Scholar 

  18. Stoehr, JP, Nadler, ST, Schueler, KL, et al. (2000) Genetic obesity unmasks nonlinear interactions between murine type 2 diabetes susceptibility loci. Diabetes 49: 1946–1954.

    Article  PubMed  CAS  Google Scholar 

  19. Lan, H, Kendziorski, CM, Haag, JD, et al. (2001) Genetic loci controlling breast cancer susceptibility in the Wistar-Kyoto rat. Genetics 157: 331–339.

    PubMed  CAS  Google Scholar 

  20. Ott, J (1999) Analysis of Human Genetic Linkage. The Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  21. Lynch, M, Walsh, B. (1998) Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  22. Liu, BH. (1998) Statistical Genomics: Linkage, Mapping, and QTL Analysis. CRC Press, Boca Raton, FL

    Google Scholar 

  23. Dempster, AP, Laird, NM, Rubin, DB. (1997) Maximum likelihood from incomplete data via the EM algorithm. J R Stat. Soc. Series B 39: 1–38.

    Google Scholar 

  24. Knapp, SJ, Bridges, WC, Birkes, D. (1990) Mapping quantitative trait loci using molecular marker linkage maps. Theor. Appl. Genet. 79: 583–592.

    Article  Google Scholar 

  25. Martinez, O, Curnow, RN. (1992) Estimating the locations and sizes of the effects of quantitative trait loci using flanking markers. Theor. Appl. Genet. 85: 480–488.

    Article  Google Scholar 

  26. Xu, SZ. (1998) Iteratively reweighted least squares mapping of quantitative trait loci. Behav. Genet. 28: 341–355.

    Article  PubMed  CAS  Google Scholar 

  27. Dupuis, J, Siegmund, D. (1999) Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151: 373–386.

    PubMed  CAS  Google Scholar 

  28. Rebai, A, Goffinet, B, Mangin, B, et al. (1994) Detecting QTLs with diallel schemes. In: van Ooijen JW, Jansen, J. (eds) Biometrics in plant breeding: applications of molecular markers. 9th meeting of the EUCARPIA, Wageningen, The Netherlands.

    Google Scholar 

  29. Rebai, A, Goffinet, B, Mangin, B. (1995) Comparing power of different methods for QTL detection. Biometrics 51: 87–99.

    Article  PubMed  CAS  Google Scholar 

  30. Piepho, HP. (2001) A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics 157: 425–432.

    PubMed  CAS  Google Scholar 

  31. Zou, F, Yandell, BS, Fine, JP. (2001) Statistical issues in the analysis of quantitative traits in combined crosses. Genetics 158: 1339–1346.

    PubMed  CAS  Google Scholar 

  32. Zou, F, Fine, JP. (2002) Note on a partial empirical likelihood. Biometrika 89: 958–961.

    Article  Google Scholar 

  33. Zou, F, Xu, ZL, Vision, TJ. (2006) Assessing the significance of quantitative trait loci in replicated mapping populations. Genetics 174: 1063–1068.

    Article  PubMed  CAS  Google Scholar 

  34. Churchill, GA, Doerge, RW. (2008) Naive application of permutation testing leads to inflated type I error rates. Genetics. 178: 609–610.

    Article  PubMed  CAS  Google Scholar 

  35. Manichaikul, A, Dupuis, J, Sen, S, et al. (2006) Poor performance of bootstrap confidence intervals for the location of a quantitative trait locus. Genetics 174: 481–489.

    Article  PubMed  Google Scholar 

  36. Mangin, B, Goffinet, B, Rebai, A. (1994) Constructing confidence intervals for QTL location. Genetics 138: 1301–1308.

    PubMed  CAS  Google Scholar 

  37. Visscher, PM, Thompson, R, Haley, CS, (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143: 1013–1020.

    PubMed  CAS  Google Scholar 

  38. Zeng, ZB. (2000). Unpublished notes on Statistical model for mapping Quantitative trait loci. North Carolina State University, Raleigh, NC.

    Google Scholar 

  39. Zeng, ZB, Kao, CH, Basten, CJ. (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74: 279–289.

    Article  PubMed  CAS  Google Scholar 

  40. Broman, KW, Speed, TP. (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J. R. Stat. Soc. Series B 64: 641–656.

    Article  Google Scholar 

  41. Green, PJ. (1995) Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711–732.

    Article  Google Scholar 

  42. Ven, RV. (2004) Reversible-Jump Markov Chain Monte Carlo for quantitative trait loci mapping. Genetics 167: 1033–1035.

    Article  PubMed  Google Scholar 

  43. Godsill, SJ. (2001) On the relationship between Markov chain Monte Carlo methods for model uncertainty. J. Comput. Graph. Stat. 10: 230–248.

    Article  Google Scholar 

  44. Godsill, SJ. (2003) Proposal densities, and product space methods. In: Green, PJ, Hjort, NL, Richardson, S, (eds) Highly Structured Stochastic Systems. Oxford University Press, London/New York/Oxford.

    Google Scholar 

  45. George, EI, McCulloch, RE, (1993) Variable selection via gibbs sampling. J. Am. Stat. Assoc. 88: 881–889.

    Article  Google Scholar 

  46. Wang, H, Zhang, YM, Li, X, et al. (2005) Bayesian shrinkage estimation of quantitative trait loci parameters. Genetics 170: 465–480.

    Article  PubMed  CAS  Google Scholar 

  47. Yi, N, Shriner, D. (2008) Advances in Bayesian multiple QTL mapping in experimental 11 designs. Heredity 100: 240–252.

    Article  PubMed  CAS  Google Scholar 

  48. Bernardo, R. (1994) Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Science 34: 20–25.

    Article  Google Scholar 

  49. Liu, Y, Zeng, ZB. (2000) A general mixture model approach for mapping quantitative trait loci from diverse cross designs involving multiple inbred lines. Genet. Res. 75: 345–355.

    Article  PubMed  CAS  Google Scholar 

  50. Draper, NR, Smith, H. (1998) Applied Regression Analysis. John Wiley & Sons, New York.

    Google Scholar 

  51. Visscher, PM, Haley, CS, Knott, SA. (1996) Mapping QTLs for binary traits in backcross and F-2 populations. Genet. Res. 68: 55–63.

    Article  Google Scholar 

  52. Xu, S, Atchley, WR. (1995) A random model approach to interval mapping of quantitative genes. Genetics 141: 1189–1197.

    PubMed  CAS  Google Scholar 

  53. McIntyre, LM, Coffman, C, Doerge, RW. (2000) Detection and location of a single binary trait locus in experimental populations. Genet. Res. 78: 79–92.

    Google Scholar 

  54. Rao, SQ, Li, X. (2000) Strategies for genetic mapping of categorical traits. Genetica 109: 183–197.

    Article  PubMed  CAS  Google Scholar 

  55. Broman, KW. (2003) Quantitative trait locus mapping in the case of a spike in the phenotype distribution. Genetics 163: 1169–1175.

    PubMed  Google Scholar 

  56. Mackay, TF, Fry, JD. (1996) Polygenic mutation in Drosophila melanogaster: genetic interactions between selection lines and candidate quantitative trait loci. Genetics 144: 671–688.

    PubMed  CAS  Google Scholar 

  57. Shepel, LA, Lan, H, Haag, JD, et al. (1998) Genetic identification of multiple loci that control breast cancer susceptibility in the rat. Genetics 149: 289–299.

    PubMed  CAS  Google Scholar 

  58. Hackett, CA, Weller, JI. (1995) Genetic mapping of quantitative trait loci for traits with ordinal distributions. Biometrics 51: 1254–1263.

    Article  Google Scholar 

  59. Diao, G, Lin, DY, Zou, F. (2004) Mapping quantitative trait loci with censored observations. Genetics 168: 1689–1698.

    Article  PubMed  CAS  Google Scholar 

  60. Kruglyak, L, Lander, ES, (1995) A nonparametric approach for mapping quantitative trait loci. Genetics 139: 1421–1428.

    PubMed  CAS  Google Scholar 

  61. Poole, TM, Drinkwater, NR, (1996) Two genes abrogate the inhibition of murine hepatocarcinogenesis by ovarian hormones. Proc Nat Acad Sci USA 93: 5848–5853.

    Article  PubMed  CAS  Google Scholar 

  62. Zou, F, Fine, JP, Yandell, BS. (2002) On empirical likelihood for a semiparametric mixture model. Biometrika 89: 61–75.

    Article  Google Scholar 

  63. Jin, C, Fine, JP, Yandell, B. (2007) A unified semiparametric framework for QTL mapping, with application to spike phenotypes. J Am Stat Assoc 102: 56–57.

    Article  CAS  Google Scholar 

  64. Fine, JP, Zou, F, Yandell, BS. (2004) Nonparametric estimation of mixture models, with application to quantitative trait loci. Biostatistics 5: 501–513.

    Article  PubMed  Google Scholar 

  65. Huang, C, Qin, J, Zou, F. (2007) Empirical likelihood-based inference for genetic mixture models. Can J Stat 35: 563–574.

    Article  Google Scholar 

  66. Lange, C., Whittaker, J. C. (2001). Mapping quantitative trait loci using generalized estimating equations. Genetics 159: 1325–1337.

    PubMed  CAS  Google Scholar 

  67. Symons, RCA, Daly, MJ, Fridlyand, J, et al. (2002) Multiple genetic loci modify susceptibility to plasmacytoma-related morbidity in E5-v-abl transgenic mice. Proc Nat Acad Sci USA 99: 11299–11304.

    Article  PubMed  CAS  Google Scholar 

  68. Diao, G, Lin, DY. (2005) Semiparametric methods for mapping quantitative rait loci with censored data. Biometrics 61: 789–798.

    Article  PubMed  Google Scholar 

  69. Epstein, MP, Lin, X, Boehnke, M, (2003) A Tobit variance-component method for linkage analysis of censored trait data. Am J Hum Genet 72: 611–620.

    Article  PubMed  CAS  Google Scholar 

  70. Lincoln, SE, Daly, MJ, Lander, ES. (1993) A tutorial and reference manual. 3rd edn. Technical Report Whitehead Institute for Biomedical Research.

    Google Scholar 

  71. Basten, CJ, Weir, BS, Zeng, ZB. (1997) QTL Cartographer: A Reference Manual and Tutorial for QTL Mapping. North Carolina State University, Raleigh, NC.

    Google Scholar 

  72. Manly, KF, Cudmore, JRH, Meer, JM. (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12: 930–932.

    Article  PubMed  CAS  Google Scholar 

  73. Manly, KF, Olson, JM, (1999) Overview of QTL mapping software and introduction to Map Manager QT. Mamm Genome 10: 327–334.

    Article  PubMed  CAS  Google Scholar 

  74. Broman, KW, Wu, H, Sen, S, et al. (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890.

    Article  PubMed  CAS  Google Scholar 

  75. Yandell, BS, Mehta, T, Banerjee, S, et al. (2007) R/qtlbim: QTL with Bayesian Interval Mapping in experimental crosses. Bioinformatics 23: 641–643.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zou, F. (2009). QTL Mapping in Intercross and Backcross Populations. In: DiPetrillo, K. (eds) Cardiovascular Genomics. Methods in Molecular Biology™, vol 573. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-247-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-247-6_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-246-9

  • Online ISBN: 978-1-60761-247-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics