Skip to main content

Ischemic Stroke in Mice and Rats

  • Protocol
  • First Online:
Cardiovascular Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 573))

Abstract

Ischemic stroke occurs most often in the territory of the middle cerebral artery (MCA) in humans. Since its description in rats more than two decades ago, the minimally invasive intraluminal suture occlusion of MCA is an increasingly used model of stroke in both rats and mice due to its ease of inducing ischemia and achieving reperfusion under well-controlled conditions. This method can be used under the guidance of laser-Doppler flowmetry to ascertain the magnitude of occlusion or reperfusion and to decrease the rate of subarachnoid hemorrhage. Ninety minutes of transient ischemia in the territory of MCA results in substantial and reproducible ischemic lesions in both the striatum and the cortex, with characteristics of lesion core and penumbra. Thus, this model is applicable to neuroprotective drug studies, including ischemic brain lesion evaluation (either in vivo with magnetic resonance imaging or post-mortem with brain tissue staining) and neurological status (motor deficits simply assessed by a six-point neurological score scale) as outcome parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koizumi, J, Yoshida, Y, Nakazawa, T, et al. (1986) Experimental studies of ischemic brain edema: 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8, 1–8.

    Article  Google Scholar 

  2. Takano, K, Latour, LL, Formato, JE, et al. (1996) The role of spreading depression in focal ischemia evaluated by diffusion mapping. Ann Neurol 39, 308–318.

    Article  PubMed  CAS  Google Scholar 

  3. Tatlisumak, T, Takano, K, Carano, RA, et al. (1998) Delayed treatment with an adenosine kinase inhibitor, GP683, attenuates infarct size in rats with temporary middle cerebral artery occlusion. Stroke 29, 1952–1958.

    Article  PubMed  CAS  Google Scholar 

  4. Tatlisumak, T, Carano, RA, Takano, K, et al. (1998) A novel endothelin antagonist, A-127722, attenuates ischemic lesion size in rats with temporary middle cerebral artery occlusion: a diffusion and perfusion MRI study. Stroke 29, 850–857.

    Article  PubMed  CAS  Google Scholar 

  5. Strbian, D, Karjalainen-Lindsberg, ML, Tatlisumak, T et al. (2006) Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab 26, 605–612.

    Article  PubMed  Google Scholar 

  6. Duverger, D, MacKenzie, ET. (1988) The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab 8, 449–461.

    Article  PubMed  CAS  Google Scholar 

  7. Oliff, HS, Marek, P, Miyazaki, B, et al. (1996) The neuroprotective efficacy of MK-801 in focal cerebral ischemia varies with rat strain and vendor. Brain Res 731, 208–212.

    Article  PubMed  CAS  Google Scholar 

  8. Sauter, A, Rudin, M. (1995) Strain-dependent drug effects in rat middle cerebral artery occlusion model of stroke. J Pharmacol Exp Ther 274, 1008–1013.

    PubMed  CAS  Google Scholar 

  9. Oliff, HS, Weber, E, Eilon, G, et al. (1995) The role of strain/vendor differences on the outcome of focal ischemia induced by intraluminal middle cerebral artery occlusion in the rat. Brain Res 675, 20–26.

    Article  PubMed  CAS  Google Scholar 

  10. Walberer, M, Stolz, E, Muller, C, et al. (2006) Experimental stroke: ischaemic lesion volume and oedema formation differ among rat strains (a comparison between Wistar and Sprague-Dawley rats using MRI). Lab Anim 40, 1–8.

    Article  PubMed  CAS  Google Scholar 

  11. Stroke Therapy Academic Industry Roundtable. (1999) Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30, 2752–2758.

    Article  Google Scholar 

  12. Alkayed, NJ, Harukuni, I, Kimes, AS, et al. (1998) Gender-linked brain injury in experimental stroke. Stroke 29, 159–165.

    Article  PubMed  CAS  Google Scholar 

  13. McCullough, LD, Zeng, Z, Blizzard, KK, et al. (2005) Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab 25, 502–512.

    Article  PubMed  CAS  Google Scholar 

  14. Du, L, Bayir, H, Lai, Y, et al. (2004) Innate gender-based proclivity in response to cytotoxicity and programmed cell death pathway. J Biol Chem 279, 38563–38570.

    Article  PubMed  CAS  Google Scholar 

  15. Renolleau, S, Fau, S, Goyenvalle, C, et al. (2007) Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender. J Neurochem 100, 1062–1071.

    Article  PubMed  CAS  Google Scholar 

  16. Longa, EZ, Weinstein, PR, Carlson, S, et al. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84–91.

    Article  PubMed  CAS  Google Scholar 

  17. Menzies, SA, Hoff, JT, Betz, AL. (1992) Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery 31, 100–106.

    Article  PubMed  CAS  Google Scholar 

  18. Bederson, JB, Pitts, LH, Tsuji, M, et al. (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17, 472–476.

    Article  PubMed  CAS  Google Scholar 

  19. Hunter, AJ, Hatcher, J, Virley, D, et al. (2000) Functional assessments in mice and rats after focal stroke. Neuropharmacology 39, 806–816.

    Article  PubMed  CAS  Google Scholar 

  20. Rogers, DC, Fisher, EM, Brown, SD, et al. (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8, 711–713.

    Article  PubMed  CAS  Google Scholar 

  21. Yamaguchi, T, Suzuki, M, Yamamoto, M. (1995) YM796, a novel muscarinic agonist, improves the impairment of learning behavior in a rat model of chronic focal cerebral ischemia. Brain Res 669, 107–114.

    Article  PubMed  CAS  Google Scholar 

  22. Kawamata, T, Alexis, NE, Dietrich, WD. (1996) Intracisternal basic fibroblast growth factor (bFGF) enhances behavioral recovery following focal cerebral infarction in the rat. J Cereb Blood Flow Metab 16, 542–547.

    Article  PubMed  CAS  Google Scholar 

  23. Zausinger, S, Baethmann, A, Schmid-Elsaesser, R. (2002) Anesthetic methods in rats determine outcome after experimental focal cerebral ischemia: mechanical ventilation is required to obtain controlled experimental conditions. Brain Res Brain Res Protoc 9, 112–121.

    Article  PubMed  CAS  Google Scholar 

  24. Kirsch, JR, Traystman, RJ, Hurn, PD. (1996) Anesthetics and cerebroprotection: experimental aspects. Int Anesthesiol Clin 34, 73–93.

    Article  PubMed  CAS  Google Scholar 

  25. Busto, R, Dietrich, WD, Globus, MY. (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7, 729–738.

    Article  PubMed  CAS  Google Scholar 

  26. Hasegawa, Y, Latour, LL, Sotak, CH. (1994) Temperature dependent change of apparent diffusion coefficient of water in normal and ischemic brain of rats. J Cereb Blood Flow Metab 14, 383–390.

    Article  PubMed  CAS  Google Scholar 

  27. Li, F, Omae, T, Fisher, M. (1999) Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke 30, 2464–2470.

    Article  PubMed  CAS  Google Scholar 

  28. Choi, JM, Shin, YW, Hong, KW. (2001) Rebamipide prevents periarterial blood-induced vasospasm in the rat femoral artery model. Pharmacol Res 43, 489–496.

    Article  PubMed  CAS  Google Scholar 

  29. Takano, K, Tatlisumak, T, Bergmann, AG. (1997) Reproducibility and reliability of middle cerebral artery occlusion using a silicone-coated suture (Koizumi) in rats. J Neurol Sci 153, 8–11.

    Article  PubMed  CAS  Google Scholar 

  30. Clark, WM, Lessov, NS, Dixon, MP. (1997) Monofilament intraluminal middle cerebral artery occlusion in the mouse. Neurol Res 19, 641–648.

    PubMed  CAS  Google Scholar 

  31. Ardehali, MR, Rondouin, G. (2003) Microsurgical intraluminal middle cerebral artery occlusion model in rodents. Acta Neurol Scand 107, 267–275.

    Article  PubMed  CAS  Google Scholar 

  32. Li, J, Henman, MC, Doyle, KM. (2004) The pre-ischaemic neuroprotective effect of a novel polyamine antagonist, N1-dansyl-spermine in a permanent focal cerebral ischaemia model in mice. Brain Res 1029, 84–92.

    Article  PubMed  CAS  Google Scholar 

  33. He, Z, Yamawaki, T, Yang, S. (1999) Experimental model of small deep infarcts involving the hypothalamus in rats: changes in body temperature and postural reflex. Stroke 30, 2743–2751.

    Article  PubMed  CAS  Google Scholar 

  34. He, Z, Yang, SH, Naritomi, H. (2000) Definition of the anterior choroidal artery territory in rats using intraluminal occluding technique. J Neurol Sci 182, 16–28.

    Article  PubMed  CAS  Google Scholar 

  35. Strbian, D, Durukan, A, Tatlisumak, T. (2008) Rodent models of hemorrhagic stroke. Curr Pharm Des 14, 352–358.

    Article  PubMed  CAS  Google Scholar 

  36. Schmid-Elsaesser, R, Zausinger, S, Hungerhuber, E. (1998) A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 29, 2162–2170.

    Article  PubMed  CAS  Google Scholar 

  37. Laing, RJ, Jakubowski, J, Laing, RW. (1993) Middle cerebral artery occlusion without craniectomy in rats. Which method works best? Stroke 24, 294–297.

    Article  PubMed  CAS  Google Scholar 

  38. Shimamura, N, Matchett, G, Tsubokawa, T. (2006) Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model. J Neurosci Methods 156, 161–165.

    Article  PubMed  CAS  Google Scholar 

  39. Bouley, J, Fisher, M, Henninger, N. (2007) Comparison between coated vs. uncoated suture middle cerebral artery occlusion in the rat as assessed by perfusion/diffusion weighted imaging. Neurosci Lett 412, 185–190.

    Article  PubMed  CAS  Google Scholar 

  40. Abraham, H, Somogyvari-Vigh, A, Maderdrut, JL. (2002) Filament size influences temperature changes and brain damage following middle cerebral artery occlusion in rats. Exp Brain Res 142, 131–138.

    Article  PubMed  CAS  Google Scholar 

  41. Gerriets, T, Stolz, E, Walberer, M. (2004) Complications and pitfalls in rat stroke models for middle cerebral artery occlusion: a comparison between the suture and the macrosphere model using magnetic resonance angiography. Stroke 35, 2372–2377.

    Article  PubMed  Google Scholar 

  42. Ma, J, Zhao, L, Nowak, TS, Jr. (2006) Selective, reversible occlusion of the middle cerebral artery in rats by an intraluminal approach Optimized filament design and methodology. J Neurosci Methods 156, 76–83.

    Article  PubMed  Google Scholar 

  43. Ginsberg, MD, Busto, R. (1989) Rodent models of cerebral ischemia. Stroke 20, 1627–1642.

    Article  PubMed  CAS  Google Scholar 

  44. Macrae, I. (1992) New models of focal cerebral ischaemia. Br J Clin Pharmacol 34, 302–308.

    Article  Google Scholar 

  45. Woitzik, J, Schilling, L. (2002) Control of completeness and immediate detection of bleeding by a single laser-Doppler flow probe during intravascular middle cerebral artery occlusion in rats. J Neurosci Methods 122, 75–78.

    Article  PubMed  Google Scholar 

  46. Li, F, Han, S, Tatlisumak, T. (1998) A new method to improve in-bore middle cerebral artery occlusion in rats: demonstration with diffusion- and perfusion-weighted imaging. Stroke 29, 1715–1719.

    Article  PubMed  CAS  Google Scholar 

  47. Mack, WJ, Komotar, RJ, Mocco, J, et al. (2003) Serial magnetic resonance imaging in experimental primate stroke: validation of MRI for pre-clinical cerebroprotective trials. Neurol Res 25, 846–852.

    Article  PubMed  Google Scholar 

  48. Gerriets, T, Stolz, E, Walberer, M, et al. (2004) Noninvasive quantification of brain edema and the space-occupying effect in rat stroke models using magnetic resonance imaging. Stroke 35, 566–571.

    Article  PubMed  CAS  Google Scholar 

  49. Palay, SL, Mc, G-RS, Gordon, S, Jr. (1962) Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. J Cell Biol 12, 385–410.

    Article  PubMed  CAS  Google Scholar 

  50. Adickes, ED, Folkerth, RD, Sims, KL. (1997) Use of perfusion fixation for improved neuropathologic examination. Arch Pathol Lab Med 121, 1199–1206.

    PubMed  CAS  Google Scholar 

  51. Liesi, P. (2006) Methods for analyzing brain tissue, In Handbook of Experimental Neurology. Tatlisumak, T, and Fisher, M, (eds.), Cambridge University Press, Cambridge, pp. 173–180.

    Chapter  Google Scholar 

  52. Mathews, KS, McLaughlin, DP, Ziabari, LH, et al. (2000) Rapid quantification of ischaemic injury and cerebroprotection in brain slices using densitometric assessment of 2,3,5-triphenyltetrazolium chloride staining. J Neurosci Methods 102, 43–51.

    Article  PubMed  CAS  Google Scholar 

  53. Joshi, CN, Jain, SK, Murthy, PS. (2004) An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Res Protoc 13, 11–17.

    Article  CAS  Google Scholar 

  54. Bederson, JB, Pitts, LH, Germano, SM, et al. (1986) Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17, 1304–1308.

    Article  PubMed  CAS  Google Scholar 

  55. Dettmers, C, Hartmann, A, Rommel, T, et al. (1994) Immersion and perfusion staining with 2,3,5-triphenyltetrazolium chloride (TTC) compared to mitochondrial enzymes 6 hours after MCA-occlusion in primates. Neurol Res 16, 205–208.

    PubMed  CAS  Google Scholar 

  56. Li, F, Irie, K, Anwer, MS, et al. (1997) Delayed triphenyltetrazolium chloride staining remains useful for evaluating cerebral infarct volume in a rat stroke model. J Cereb Blood Flow Metab 17, 1132–1135.

    Article  PubMed  CAS  Google Scholar 

  57. Okuno, S, Nakase, H, Sakaki, T. (2001) Comparative study of 2, 3, 5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin staining for quantification of early brain ischemic injury in cats. Neurol Res 23, 657–661.

    Article  PubMed  CAS  Google Scholar 

  58. Benedek, A, Moricz, K, Juranyi, Z. (2006) Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Res 1116, 159–165.

    Article  PubMed  CAS  Google Scholar 

  59. Park, CK, Mendelow, AD, Graham, DI. (1988) Correlation of triphenyltetrazolium chloride perfusion staining with conventional neurohistology in the detection of early brain ischaemia. Neuropathol Appl Neurobiol 14, 289–298.

    Article  PubMed  CAS  Google Scholar 

  60. Chan, YC, Wang, MF, Chen, YC, et al. (2003) Long-term administration of Polygonum multiflorum Thunb. reduces cerebral ischemia-induced infarct volume in gerbils. Am J Chin Med 31, 71–77.

    Article  PubMed  Google Scholar 

  61. Yang, DY, Wang, MF, Chen, IL, et al. (2001) Systemic administration of a water-soluble hexasulfonated C(60) (FC(4)S) reduces cerebral ischemia-induced infarct volume in gerbils. Neurosci Lett 311, 121–124.

    Article  PubMed  CAS  Google Scholar 

  62. Izumi, Y, Roussel, S, Pinard, E, et al. (1991) Reduction of infarct volume by magnesium after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 11, 1025–1030.

    Article  PubMed  CAS  Google Scholar 

  63. Lee, SH, Kim, M, Kim, YJ, et al. (2002) Ischemic intensity influences the distribution of delayed infarction and apoptotic cell death following transient focal cerebral ischemia in rats. Brain Res 956, 14–23.

    Article  PubMed  CAS  Google Scholar 

  64. Garcia, JH, Liu, KF, Ho, KL. (1995) Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke 26, 636–642.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Helsinki University Central Hospital, the Finnish Academy of Sciences, and the European Union (grant no: FP7 202213).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Durukan, A., Tatlisumak, T. (2009). Ischemic Stroke in Mice and Rats. In: DiPetrillo, K. (eds) Cardiovascular Genomics. Methods in Molecular Biology™, vol 573. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-247-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-247-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-246-9

  • Online ISBN: 978-1-60761-247-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics