Skip to main content

Computational Overview of GPCR Gene Universe to Support Reverse Chemical Genomics Study

  • Protocol
  • First Online:
Reverse Chemical Genetics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 577))

Summary

In order to support high-throughput screening for ligands of G-protein coupled receptors (GPCRs) by using bioinformatics technology, we introduce a database (SEVENS) with genome-scale annotation and software (GRIFFIN) that can simulate GPCR function. SEVENS (http://sevens.cbrc.jp/) is an integrated database that includes GPCR genes that are identified with high accuracy (99.4% sensitivity and 96.6% specificity) from various types of genomes, by a pipeline that integrates such software as a gene finder, a sequence alignment tool, a motif and domain assignment tool, and a transmembrane helix (TMH) predictor. SEVENS provides the user a genome-scale overview of the “GPCR universe” with detailed information of chromosomal mapping, phylogenetic tree, protein sequence and structure, and experimental evidence, all of which are accessible via a user-friendly interface. GRIFFIN (http://griffin.cbrc.jp/) can predict GPCR and G-protein coupling selectivity induced by ligand binding with high sensitivity and specificity (more than 87% on average), based on the support vector machine (SVM) and hidden Markov Model (HMM). SEVENS and GRIFFIN are expected to contribute to revealing the function of orphan and unknown GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drews, J. (1996) Genomic sciences and the medicine of tomorrow. Nat Biotechnol 14, 1516–1518.

    Article  PubMed  CAS  Google Scholar 

  2. Ono, Y., Fujibuchi, W. and Suwa, M. (2005) Automatic gene collection system for Genome-Scale overview of G-protein coupled receptors in Eukaryotes. Gene 364, 63–73.

    Article  PubMed  CAS  Google Scholar 

  3. Yabuki, Y., Muramatsu, T., Hirokawa, T., Mukai, H. and Suwa, M. (2005) GRIFFIN: a system for predicting GPCR–G-protein coupling selectivity using support vector machines and a hidden Markov model. Nucleic Acid Res 33, W 148–W153.

    Article  CAS  Google Scholar 

  4. Horn, F., Vriend, G. and Cohen, F. E. (2001) Collecting and harvesting biological data: the GPCRDB and Nuclear DB information systems. Nucleic Acids Res 29, 346–349.

    Article  PubMed  CAS  Google Scholar 

  5. Hodges, P. E., et al. (2002) Annotating the human proteome: the Human Proteome Survey Database (HumanPSD) and an in-depth target database for G protein-coupled receptors (GPCR-PD) from Incyte Genomics. Nucl Acids Res 30, 137–141.

    Article  PubMed  CAS  Google Scholar 

  6. Crasto, C. et al. (2002) Olfactory Receptor Database: a metadata-driven automated population from sources of gene and protein sequences. Nucl Acids Res 30, 354–360.

    Article  PubMed  CAS  Google Scholar 

  7. Gotoh, O. (2000) Homology-based gene structure prediction: simplified matching algorithm using a translated codon (tron) and improved accuracy by allowing for long gaps. Bioinformatics 16, 190–202.

    Article  PubMed  CAS  Google Scholar 

  8. Altschul, S. F., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  9. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L. and Sonnhammer, E. L. (2000) The Pfam protein families’ database. Nucleic Acids Res 28, 263–266.

    Article  PubMed  CAS  Google Scholar 

  10. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B. A., de Castro, E., Lachaize, C., Langendijk-Genevaux, P. S. and Sigrist, C. J. (2008) The 20 years of PROSITE. Nucleic Acids Res 36, D245–9.

    Article  PubMed  CAS  Google Scholar 

  11. Hirokawa, T., Boon-Chieng, S. and Mitaku, S. (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379.

    Article  PubMed  CAS  Google Scholar 

  12. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF and Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life J Mol Biol 337, 635–645.

    Article  PubMed  CAS  Google Scholar 

  13. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  14. Page, RD, (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.

    PubMed  CAS  Google Scholar 

  15. Gaulton, A. and Attwood, T. K. (2003) Bioinformatics approaches for the classification of G-protein-coupled receptors. Curr Opin Pharmacol 3, 114–120.

    Article  PubMed  CAS  Google Scholar 

  16. Karchin, R., Karplus, K. and Haussler, D. (2002) Classifying G-protein coupled receptors with support vector machines. Bioinformatics 18, 147–159.

    Article  PubMed  CAS  Google Scholar 

  17. Bhasin, M. and Raghava, G.P. S. (2004) GPCRpred: an SVM-based method for prediction of families and subfamilies of G-protein coupled receptors. Nucleic Acid Res 32, 383–389.

    Article  Google Scholar 

  18. Lapnish, M., Gutcaits, A., Prusis, P., Post, C., Lundstedt, T. and Wikberg, J. E. S. (2002) Classification of G-protein coupled receptors by alignment-independent extraction of principle chemical properties of primary amino acid sequences. Protein Sci 11, 795–805.

    Article  Google Scholar 

  19. Huang, Y., Cai, J., Ji, L. and Li, Y. (2004) Classifying G-protein coupled receptors with bagging classification tree. Comput. Biol. Chem 28, 275–280.

    Article  PubMed  CAS  Google Scholar 

  20. Qian, B., Soyer, O. S., Neubig, R. R. and Goldstein, R. A. (2003) Depicting a protein’s two faces: GPCR classification by phylogenetic tree-based HMMs. FEBS Lett 554, 95–99.

    Article  PubMed  CAS  Google Scholar 

  21. Attwood, T. K., Croning, M. D. R. and Gaulton, A. (2001) Deriving structural and functional insights from a ligand-based hierarchical classification of G protein-coupled receptors. Protein Eng 15, 7–12.

    Article  Google Scholar 

  22. Cao, J., Panetta, R., Yue, S., Steyaert, A., Young-Bellido, M. and Ahmad, S. (2003) A naive Bayes model to predict coupling between seven transmembrane domain receptors and G-proteins. Bioinformatics 19, 234–240.

    Article  PubMed  CAS  Google Scholar 

  23. Möller, S., Vilo, J. and Croning, M. D. R. (2001) Prediction of the coupling specificity of G protein coupled receptors to their G proteins. Bioinformatics 17, 174–181.

    Article  Google Scholar 

  24. Sreekumar, K. R., Huang, Y., Pausch, M. H. and Gulukota, K. (2004) Predicting GPCR–G-protein coupling using hidden Markov models. Bioinformatics 20, 3490–3499.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for special projects in genome science from the Ministry of Education Culture, Sports, Science, and Technology of Japan. We would like to thank Dr. Wataru Fujibuchi, Dr. Takatsugu Hirokawa, Mr. Yukimitsu Yabuki, and Mr. Tatsuya Nishizawa for helpful discussion in the course of SEVENS and GRIFFIN development.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Suwa, M., Ono, Y. (2009). Computational Overview of GPCR Gene Universe to Support Reverse Chemical Genomics Study. In: Koga, H. (eds) Reverse Chemical Genetics. Methods in Molecular Biology™, vol 577. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-232-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-232-2_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-231-5

  • Online ISBN: 978-1-60761-232-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics