Skip to main content

Quantitative Analysis of Distal Tip Cell Migration in C. elegans

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 571))

Summary

Correct distal tip cell (DTC) migration in the nematode C. elegans requires sensing soluble and matrix cues, remodeling extracellular matrix, and signaling through conserved integrin and netrin pathways. The DTC executes a complex path and coordinates its migration with the developmental stages of larval morphogenesis. This chapter outlines a method for investigating DTC migration in C. elegans using feeding RNA interference (RNAi) and light microscopy. To deplete a candidate gene of interest, nematode eggs are added to plates seeded with RNAi-inducing bacterial lawns. The animals hatch and begin to eat the RNAi bacteria, releasing dsRNA and causing the targeted gene to be depleted during larval development. Positions of migratory cells are monitored in larvae and young adults using differential interference contrast (DIC) and epifluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinberg, R. A. (2007) The Biology of Cancer. Garland Science, New York, NY.

    Google Scholar 

  2. Horwitz, R., and Webb, D. (2003) Cell migration. Curr. Biol. 13, R756–759.

    Article  PubMed  CAS  Google Scholar 

  3. Lehmann, R. (2001) Cell migration in invertebrates: clues from border and distal tip cells. Curr. Opin. Genet. Dev. 11, 457–463.

    Article  PubMed  CAS  Google Scholar 

  4. Hope, I. A. (ed.) (1999) C. elegans, A Practical Approach. Oxford University Press, Oxford, UK.

    Google Scholar 

  5. Merz, D. C., and Culotti, J. G. (2000) Genetic analysis of growth cone migrations in Caenorhabditis elegans. J. Neurobiol. 44, 281–288.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, E. B., and Stern, M. J. (1998) Understanding cell migration guidance: lessons from sex myoblast migration in C. elegans. Trends Genet. 14, 322–327.

    Article  PubMed  CAS  Google Scholar 

  7. Nishiwaki, K. (1999) Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics 152, 985–997.

    PubMed  CAS  Google Scholar 

  8. Cram, E. J., Shang, H., and Schwarzbauer, J. E. (2006) A systematic RNA interference screen reveals a cell migration gene network in C. elegans. J. Cell. Sci. 119, 4811–4818.

    Article  PubMed  CAS  Google Scholar 

  9. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  10. Grishok, A. (2005) RNAi mechanisms in Caenorhabditis elegans. FEBS Lett. 579, 5932–5939.

    Article  PubMed  CAS  Google Scholar 

  11. Pak, J., and Fire, A. (2007) Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241–244.

    Article  PubMed  CAS  Google Scholar 

  12. Sijen, T., Steiner, F. A., Thijssen, K. L., and Plasterk, R. H. (2007) Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315, 244–247.

    Article  PubMed  CAS  Google Scholar 

  13. Hull, D., and Timmons, L. (2004) Methods for delivery of double-stranded RNA into Caenorhabditis elegans. Methods Mol. Biol. 265, 23–58.

    PubMed  CAS  Google Scholar 

  14. Timmons, L. (2006) Delivery methods for RNA interference in C. elegans. Methods Mol. Biol. 351, 119–125.

    PubMed  CAS  Google Scholar 

  15. Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., et al. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237.

    Article  PubMed  CAS  Google Scholar 

  16. Reboul, J., Vaglio, P., Rual, J. F., Lamesch, P., Martinez, M., Armstrong, C. M., et al. (2003) C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat. Genet. 34, 35–41.

    Article  PubMed  Google Scholar 

  17. Kamath, R. S., and Ahringer, J. (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321.

    Article  PubMed  CAS  Google Scholar 

  18. Cram, E. J., Clark, S. G., and Schwarzbauer, J. E. (2003) Talin loss-of-function uncovers roles in cell contractility and migration in C. elegans. J. Cell. Sci. 116, 3871–3878.

    Article  PubMed  CAS  Google Scholar 

  19. Su, M., Merz, D. C., Killeen, M. T., Zhou, Y., Zheng, H., Kramer, J. M., et al. (2000) Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in Caenorhabditis elegans. Development 127, 585–594.

    PubMed  CAS  Google Scholar 

  20. Cullen, B. R. (2006) Enhancing and confirming the specificity of RNAi experiments. Nat. Methods 3, 677–881.

    Article  PubMed  CAS  Google Scholar 

  21. Ahringer (ed.), J. in “WormBook” (Community, T. C. e. R., Ed.), WormBook.

    Google Scholar 

  22. Cumming, G., Fidler, F., and Vaux, D. L. (2007) Error bars in experimental biology. J. Cell Biol. 177, 7–11.

    Article  PubMed  CAS  Google Scholar 

  23. McKay, S. J., Johnsen, R., Khattra, J., Asano, J., Baillie, D. L., Chan, S., et al. (2003) Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb. Symp. Quant. Biol. 68, 159–169.

    Article  PubMed  CAS  Google Scholar 

  24. Harfe, B. D., Vaz Gomes, A., Kenyon, C., Liu, J., Krause, M., and Fire, A. (1998) Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning. Genes Dev. 12, 2623–2635.

    Article  PubMed  CAS  Google Scholar 

  25. Killeen, M., Tong, J., Krizus, A., Steven, R., Scott, I., Pawson, T., and Culotti, J. (2002) UNC-5 function requires phosphorylation of cytoplasmic tyrosine 482, but its UNC-40-independent functions also require a region between the ZU-5 and death domains. Dev. Biol. 251, 348–366.

    Article  PubMed  CAS  Google Scholar 

  26. Steven, R., Kubiseski, T. J., Zheng, H., Kulkarni, S., Mancillas, J., Ruiz Morales, A., et al. (1998) UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92, 785–795.

    Article  PubMed  CAS  Google Scholar 

  27. Quinn, C. C., Pfeil, D. S., Chen, E., Stovall, E. L., Harden, M. V., Gavin, M. K., et al. (2006) UNC-6/netrin and SLT-1/slit guidance cues orient axon outgrowth mediated by MIG-10/RIAM/lamellipodin. Curr. Biol. 16, 845–853.

    Article  PubMed  CAS  Google Scholar 

  28. Baum, P. D., and Garriga, G. (1997) Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron 19, 51–62.

    Article  PubMed  CAS  Google Scholar 

  29. Zipkin, I. D., Kindt, R. M., and Kenyon, C. J. (1997) Role of a new Rho family member in cell migration and axon guidance in C.elegans. Cell 90, 883–894.

    Article  PubMed  CAS  Google Scholar 

  30. Sym, M., Robinson, N., and Kenyon, C. (1999) MIG-13 positions migrating cells along the anteroposterior body axis of C. elegans. Cell 98, 25–36.

    Article  PubMed  CAS  Google Scholar 

  31. Wacker, I., Schwarz, V., Hedgecock, E. M., and Hutter, H. (2003) zag-1, a Zn-finger homeodomain transcription factor controlling neuronal differentiation and axon outgrowth in C. elegans. Development 130, 3795–3805.

    Article  PubMed  CAS  Google Scholar 

  32. Abraham, M. C., Lu, Y., and Shaham, S. (2007) A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. Dev. Cell 12, 73–86.

    Article  PubMed  CAS  Google Scholar 

  33. Zallen, J. A., Yi, B. A., and Bargmann, C. I. (1998) The conserved immunoglobulin superfamily member SAX-3/Robo directs multiple aspects of axon guidance in C. elegans. Cell 92, 217–227.

    Article  PubMed  CAS  Google Scholar 

  34. Forrester, W. C., Perens, E., Zallen, J. A., and Garriga, G. (1998) Identification of Caenorhabditis elegans genes required for neuronal differentiation and migration. Genetics 148, 151–165.

    PubMed  CAS  Google Scholar 

  35. Chang, W., Tilmann, C., Thoemke, K., Markussen, F. H., Mathies, L. D., Kimble, J., and Zarkower, D. (2004) A forkhead protein controls sexual identity of the C. elegans male somatic gonad. Development 131, 1425–1436.

    Article  PubMed  CAS  Google Scholar 

  36. Clark, S. G., and Chiu, C. (2003) C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation. Development 130, 3781–3794.

    Article  PubMed  CAS  Google Scholar 

  37. Maduro, M., and Pilgrim, D. (1996) Conservation of function and expression of unc-119 from two Caenorhabditis species despite divergence of non-coding DNA. Gene 183, 77–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sarah Ghabbour for the photographs in Fig. 1, and Ismar Kovacevic and Hiba Tannoury for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Lee, M., Cram, E.J. (2009). Quantitative Analysis of Distal Tip Cell Migration in C. elegans . In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology™, vol 571. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-198-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-198-1_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-197-4

  • Online ISBN: 978-1-60761-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics