Skip to main content

Modeling Spatial and Temporal Dynamics of Chemotactic Networks

  • Protocol
  • First Online:
Book cover Chemotaxis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 571))

Summary

When stimulated by chemoattractants, eukaryotic cells respond through a combination of temporal and spatial dynamics. These responses come about because of the interaction of a large number of signaling components. The complexity of these systems makes it hard to understand without a means of systematically generating and testing hypotheses. Computer simulations have proved to be useful in testing conceptual models. Here we outline the steps required to develop these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ingolia, N. T. and Murray, A. W. (2004) The ups and downs of modeling the cell cycle. Curr. Biol. 14, R771–R777.

    Article  PubMed  CAS  Google Scholar 

  2. Tindall, M. J., Porter, S. L., Maini, P. K., Gaglia, G., and Armitage, J. P. (2008) Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Bull. Math. Biol. 70, 1525–1569.

    Article  PubMed  CAS  Google Scholar 

  3. Macnab, R. M. and Koshland, D. E., Jr. (1972) The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 69, 2509–2512.

    Article  PubMed  CAS  Google Scholar 

  4. Koshland, D. E., Jr. (1977) A response regulator model in a simple sensory system. Science 196, 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  5. Barkai, N. and Leibler, S. (1997) Robustness in simple biochemical networks. Nature 387, 913–917.

    Article  PubMed  CAS  Google Scholar 

  6. Alon, U., Surette, M. G., Barkai, N., and Leibler, S. (1999) Robustness in bacterial chemotaxis. Nature 397, 168–171.

    Article  PubMed  CAS  Google Scholar 

  7. Bray, D., Levin, M. D., and Morton-Firth, C. J. (1998) Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88.

    Article  PubMed  CAS  Google Scholar 

  8. Bray, D. and Duke, T. (2004) Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu. Rev. Biophys. Biomol. Struct. 33, 53–73.

    Article  PubMed  CAS  Google Scholar 

  9. Iglesias, P. A. and Devreotes, P. N. (2008) Navigating through models of chemotaxis. Curr. Opin. Cell Biol. 20, 35–40.

    Article  PubMed  CAS  Google Scholar 

  10. Janetopoulos, C., Ma, L., Devreotes, P. N., and Iglesias, P. A. (2004) Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc. Natl. Acad. Sci. U.S.A. 101, 8951–8956.

    Article  PubMed  CAS  Google Scholar 

  11. Postma, M., Bosgraaf, L., Loovers, H. M., and Van Haastert, P. J. (2004) Chemotaxis: signalling modules join hands at front and tail. EMBO Rep. 5, 35–40.

    Article  PubMed  CAS  Google Scholar 

  12. Ma, L., Janetopoulos, C., Yang, L., Devreotes, P. N., and Iglesias, P. A. (2004) Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI(3,4,5)P3 response in Dictyostelium cells. Biophys. J. 87, 3764–3774.

    Article  PubMed  CAS  Google Scholar 

  13. Alves, R., Antunes, F., and Salvador, A. (2006) Tools for kinetic modeling of biochemical networks. Nat. Biotechnol. 24, 667–672.

    Article  PubMed  CAS  Google Scholar 

  14. Bathe, K.-J. (1996) Finite Element Procedures. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  15. Slepchenko, B. M., Schaff, J. C., Macara, I., and Loew, L. M. (2003) Quantitative cell biology with the Virtual Cell. Trends Cell Biol. 13, 570–576.

    Article  PubMed  CAS  Google Scholar 

  16. Holmes, R. M. (2007) A Cell Biologist’s Guide to Modeling and Bioinformatics. Wiley-Interscience, Hoboken, NJ.

    Book  Google Scholar 

  17. Li, H. Y., Ng, W. P., Wong, C. H., Iglesias, P. A., and Zheng, Y. (2007) Coordination of chromosome alignment and mitotic progression by the chromosome-based Ran signal. Cell Cycle 6, 1886–1895.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Yang, L., Iglesias, P.A. (2009). Modeling Spatial and Temporal Dynamics of Chemotactic Networks. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology™, vol 571. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-198-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-198-1_32

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-197-4

  • Online ISBN: 978-1-60761-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics