Skip to main content

Neutrophil Motility In Vivo Using Zebrafish

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 571))

Summary

Zebrafish have emerged as a powerful model organism to study neutrophil chemotaxis and inflammation in vivo. Studies of neutrophil chemotaxis in animal models have previously been hampered both by the limited number of specimens available for analysis and by the need for invasive procedures to perform intravital microscopy. Due to the transparency and cell permeability of zebrafish embryos these limitations are circumvented, and the zebrafish system is amenable to both live time-lapse imaging of neutrophil chemotaxis and for screening of the effects of chemical compounds on the inflammatory response in vivo. Here, we describe methods to analyze neutrophil-directed migration toward wounds using both fixed embryos by myeloperoxidase activity assay, and live embryos by time-lapse microscopy. Further, methods are described for the evaluation of the effects of chemical compounds on neutrophil motility and the innate immune responses in zebrafish embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patton, E. E., and Zon, L. I. (2001) The art and design of genetic screens: zebrafish. Nat. Rev. Genet. 2, 956–966.

    Article  PubMed  CAS  Google Scholar 

  2. Zon, L. I., and Peterson, R. T. (2005) In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44.

    Article  PubMed  CAS  Google Scholar 

  3. Peterson, R. T., Shaw, S. Y., Peterson, T. A., Milan, D. J., Zhong, T. P., Schreiber, S. L., et al. (2004) Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotechnol. 22, 595–599.

    Article  PubMed  CAS  Google Scholar 

  4. Murphey, R. D., and Zon, L. I. (2006) Small molecule screening in the zebrafish. Methods 39, 255–261.

    Article  PubMed  CAS  Google Scholar 

  5. Carradice, D., and Lieschke, G. J. (2008) Zebrafish in hematology: sushi or science? Blood 111, 3331–3342.

    Article  PubMed  CAS  Google Scholar 

  6. de Jong, J. L., and Zon, L. I. (2005) Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu. Rev. Genet. 39, 481–501.

    Article  PubMed  Google Scholar 

  7. Brown, S. B., Tucker, C. S., Ford, C., Lee, Y., Dunbar, D. R., and Mullins, J. J. (2007) Class III antiarrhythmic methanesulfonanilides inhibit leukocyte recruitment in zebrafish. J. Leukoc. Biol. 82, 79–84.

    Article  PubMed  CAS  Google Scholar 

  8. Hall, C., Flores, M. V., Storm, T., Crosier, K., and Crosier, P. (2007) The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev. Biol. 7, 42.

    Article  PubMed  Google Scholar 

  9. Mathias, J. R., Perrin, B. J., Liu, T. X., Kanki, J., Look, A. T., and Huttenlocher, A. (2006) Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80, 1281–1288.

    Article  PubMed  CAS  Google Scholar 

  10. Meijer, A. H., van der Sar, A. M., Cunha, C., Lamers, G. E., Laplante, M. A., Kikuta, H., et al. (2008) Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Dev. Comp. Immunol. 32, 36–49.

    Article  PubMed  CAS  Google Scholar 

  11. Renshaw, S. A., Loynes, C. A., Trushell, D. M., Elworthy, S., Ingham, P. W., and Whyte, M. K. (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108, 3976–3978.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, Y., Bai, X. T., Zhu, K. Y., Jin, Y., Deng, M., Le, H. Y., et al. (2008) In vivo interstitial migration of primitive macrophages mediated by JNK-matrix metalloproteinase 13 signaling in response to acute injury. J. Immunol. 181, 2155–2164.

    PubMed  CAS  Google Scholar 

  13. Le Guyader, D., Redd, M. J., Colucci-Guyon, E., Murayama, E., Kissa, K., Briolat, V., et al. (2008) Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 111, 132–141.

    Article  PubMed  Google Scholar 

  14. Bennett, C. M., Kanki, J. P., Rhodes, J., Liu, T. X., Paw, B. H., Kieran, M. W., et al. (2001) Myelopoiesis in the zebrafish, Danio rerio. Blood 98, 643–651.

    Article  PubMed  CAS  Google Scholar 

  15. Lieschke, G. J., Oates, A. C., Crowhurst, M. O., Ward, A. C., and Layton, J. E. (2001) Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 98, 3087–3096.

    Article  PubMed  CAS  Google Scholar 

  16. Murayama, E., Kissa, K., Zapata, A., Mordelet, E., Briolat, V., Lin, H. F., et al. (2006) Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25, 963–975.

    Article  PubMed  CAS  Google Scholar 

  17. Bates, J. M., Akerlund, J., Mittge, E., and Guillemin, K. (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371–382.

    Article  PubMed  CAS  Google Scholar 

  18. Levraud, J. P., Colucci-Guyon, E., Redd, M. J., Lutfalla, G., and Herbomel, P. (2008) In vivo analysis of zebrafish innate immunity. Methods Mol. Biol. 415, 337–363.

    PubMed  CAS  Google Scholar 

  19. Nusslein-Volhard, C., and Dahm, R. (eds.) (2002) Zebrafish, A Practical Approach, Oxford University Press Inc., New York, NY.

    Google Scholar 

  20. Pankov, R., Endo, Y., Even-Ram, S., Araki, M., Clark, K., Cukierman, E., et al. (2005) A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170, 793–802.

    Article  PubMed  CAS  Google Scholar 

  21. Sumen, C., Mempel, T. R., Mazo, I. B., and von Andrian, U. H. (2004) Intravital microscopy: visualizing immunity in context. Immunity 21, 315–329.

    PubMed  CAS  Google Scholar 

  22. Grabher, C., Cliffe, A., Miura, K., Hayflick, J., Pepperkok, R., Rorth, P., and Wittbrodt, J. (2007) Birth and life of tissue macrophages and their migration in embryogenesis and inflammation in medaka. J. Leukoc. Biol. 81, 263–271.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Ernie Dodd and Sa Kan Yoo for acquiring microscopic images used in the manuscript, and Benjamin Perrin for initial development of the protocol for time-lapse DIC imaging of zebrafish embryos.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Mathias, J.R., Walters, K.B., Huttenlocher, A. (2009). Neutrophil Motility In Vivo Using Zebrafish. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology™, vol 571. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-198-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-198-1_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-197-4

  • Online ISBN: 978-1-60761-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics