Skip to main content

Microfluidic Techniques for the Analysis of Bacterial Chemotaxis

  • Protocol
  • First Online:
Book cover Chemotaxis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 571))

Summary

Anton van Leeuwenhoek first observed bacterial motility in the seventeenth century, and Wilhelm Pfeffer described bacterial chemotaxis in the late nineteenth century. A number of methods, briefly summarized here, have been developed over the years to quantify the motility and chemotaxis of bacteria, but none of them is totally satisfactory. In this chapter, we describe two new assays for chemotaxis that are based on microfabrication and microfluidic techniques. With easily culturable and manipulated bacteria like Escherichia coli, fluorescent labeling of the cells with green fluorescent protein (GFP) or red fluorescent protein (RFP) provides a convenient method for visualizing cells and differentiating two strains in the same experiment. The methods can be extended to environmental samples and mixed bacterial populations with suitable modifications of the optical recording system. The methods are equally useful for studying random motility, attractant chemotaxis, or repellent chemotaxis. The microfluidic system also provides a straightforward way to enrich for mutants that lose or gain responses to individual chemicals. The same approaches can presumably be used to isolate bacteria from environmental samples that respond, or do not respond, to particular chemicals or mixtures of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, J. (1966) Chemotaxis in bacteria. Science 153, 708–716.

    Article  PubMed  CAS  Google Scholar 

  2. Hazelbauer, G. L., Mesibov, R. E., and Adler, J. (1969) Escherichia coli mutants defective in chemotaxis toward specific chemicals. Proc. Natl. Acad. Sci. USA 64, 1300–1307.

    Article  PubMed  CAS  Google Scholar 

  3. Berg, H. C. (1975) How bacteria swim. Sci. Am. 233, 36–44.

    Article  PubMed  CAS  Google Scholar 

  4. Purcell, E. M. (1977) Life at low Reynolds number. Am. J. Phys. 45, 3–11.

    Article  Google Scholar 

  5. Berg, H. C. (1993) Random Walks in Biology. Princeton University Press, Princeton, NJ.

    Google Scholar 

  6. Jarrell, K. F., and McBride, M. J. (2008) The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6, 466–476.

    Article  PubMed  CAS  Google Scholar 

  7. Ehlers, K. M., Samuel, A. D., Berg, H. C., and Montgomery, M. (1996) Do cyanobacteria swim using traveling surface waves? Proc. Natl. Acad. Sci. USA 93, 8340–8343.

    Article  PubMed  CAS  Google Scholar 

  8. Berg, H. C., and Anderson, R. A. (1973) Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382.

    Article  PubMed  CAS  Google Scholar 

  9. Thomas, N. A., Bardy, S. L., and Jarrell, K. F. (2001) The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol. Rev. 25, 147–174.

    Article  PubMed  CAS  Google Scholar 

  10. Berg, H. C. (1976) How spirochetes may swim. J. Theor. Biol. 56, 269–273.

    Article  PubMed  CAS  Google Scholar 

  11. Armitage, J. P., and Schmitt, R. (1997) Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti – variations on a theme? Microbiology 143, 3671–3682.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, D. A., and Berg, H. C. (1974) Temporal stimulation of chemotaxis in Escherichia coli. Proc. Natl. Acad. Sci. USA 71, 1388–1392.

    Article  PubMed  CAS  Google Scholar 

  13. Macnab, R. M., and Koshland, D. E., Jr. (1972) The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 69, 2509–2512.

    Article  PubMed  CAS  Google Scholar 

  14. Springer, M. S., Goy, M. F., and Adler, J. (1977) Sensory transduction in Escherichia coli: a requirement for methionine in sensory adaptation. Proc. Natl. Acad. Sci. USA 74, 183–187.

    Article  PubMed  CAS  Google Scholar 

  15. Koshland, D. E., Jr. (1977) A response regulator model in a simple sensory system. Science 196, 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  16. Wolfe, A. J., and Berg, H. C. (1989) Migration of bacteria in semisolid agar. Proc. Natl. Acad. Sci. USA 86, 6973–6977.

    Article  PubMed  CAS  Google Scholar 

  17. Shioi, J., Dang, C. V., and Taylor, B. L. (1987) Oxygen as attractant and repellent in bacterial chemotaxis. J. Bacteriol. 169, 3118–3123.

    PubMed  CAS  Google Scholar 

  18. Parkinson, J. S. (2007) A “bucket of light” for viewing bacterial colonies in soft agar. Methods Enzymol. 423, 432–435.

    Article  PubMed  Google Scholar 

  19. Harshey, R. M. (1994) Bees aren’t the only ones: swarming in gram-negative bacteria. Mol. Microbiol. 13, 389–394.

    Article  PubMed  CAS  Google Scholar 

  20. Adler, J. (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol. 74, 77–91.

    Article  PubMed  CAS  Google Scholar 

  21. Mesibov, R., and Adler, J. (1972) Chemotaxis toward amino acids in Escherichia coli. J. Bacteriol. 112, 315–326.

    PubMed  CAS  Google Scholar 

  22. Adler, J., Hazelbauer, G. L., and Dahl, M. M. (1973) Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 115, 824–847.

    PubMed  CAS  Google Scholar 

  23. Futrelle, R. P., and Berg, H. C. (1972) Specification of gradients used for studies of chemotaxis. Nature 239, 517–518.

    Article  PubMed  CAS  Google Scholar 

  24. Tso, W.-W., and Adler, J. (1974) Negative chemotaxis in Escherichia coli. J. Bacteriol. 118, 560–576.

    PubMed  CAS  Google Scholar 

  25. Adler, J., and Tso, W.-W. (1974) “Decision”-making in bacteria: chemotactic response of Escherichia coli to conflicting stimuli. Science 184, 1292–1294.

    Article  PubMed  CAS  Google Scholar 

  26. Gardina, P. J., Bormans, A. F., and Manson, M. D. (1998) A mechanism for simultaneous sensing of aspartate and maltose by the Tar chemoreceptor of Escherichia coli. Mol. Microbiol. 29, 1147–1154.

    Article  PubMed  CAS  Google Scholar 

  27. Bainer, R., Park, H., and Cluzel, P. (2003) A high-throughput capillary assay for bacterial chemotaxis. J. Microbiol. Methods 55, 315–319.

    Article  Google Scholar 

  28. Dahlquist, F. W., Lovely, P., and Koshland, D. E., Jr. (1972) Quantitative analysis of bacterial migration in chemotaxis. Nat. New Biol. 236, 120–123.

    Article  PubMed  CAS  Google Scholar 

  29. Dahlquist, F. W., Ewell, R. A., and Lovely, P. S. (1976) Studies of bacterial chemotaxis in defined concentration gradients. A model for chemotaxis toward L-serine. J. Supramol. Struct. 4, 329–342.

    Article  Google Scholar 

  30. Diao, J., Young, L., Kim, S., Fogarty, E. A., Heilman, S. M., Zhou, P., et al. (2005) A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 6, 381–388.

    Article  PubMed  Google Scholar 

  31. Berg, H. C. (1971) How to track bacteria. Rev. Sci. Instrum. 42, 868–871.

    Article  PubMed  CAS  Google Scholar 

  32. Berg, H. C., and Brown, D. A. (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500–504.

    Google Scholar 

  33. Berg, H. C. (2005) Q&A Howard Berg. Curr. Biol. 15, R189–R190.

    Article  PubMed  CAS  Google Scholar 

  34. Amsler, C. D. (1996) Use of computer-assisted motion analysis for quantitative measurements of swimming behavior in peritrichously flagellated bacteria. Anal. Biochem. 235, 20–25.

    Article  PubMed  CAS  Google Scholar 

  35. Khan, S. Amoyaw, K., Spudich, J. L., Reid, G. P., and Trentham, D. R. (1992) Bacterial chemoreceptor signaling probed by flash photorelease of a caged serine. Biophys. J. 62, 67–68.

    Article  PubMed  CAS  Google Scholar 

  36. Silverman, M., and Simon, M. (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74.

    Article  PubMed  CAS  Google Scholar 

  37. Block, S. M., Segall, J. E., and Berg, H. C. (1982) Impulse responses in bacterial chemotaxis. Cell 31, 215–226.

    Article  PubMed  CAS  Google Scholar 

  38. Kuwajima, G. (1988) Construction of a minimum-size functional flagellin of Escherichia coli. J. Bacteriol. 170, 3305–3309.

    PubMed  CAS  Google Scholar 

  39. Scharf, B. E., Fahrner, K. A., Turner, L., and Berg, H. C. (1998) Control of direction of flagellar rotation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 95, 201–206.

    Article  PubMed  CAS  Google Scholar 

  40. Eisenbach, M., Wolf, A., Welch, M., Caplan, S. R., Lapidus, I. R., Macnab, R. M., et al. (1990) Pausing, switching and speed fluctuation of the bacterial flagellar motor and their relation to motility and chemotaxis. J. Mol. Biol. 211, 551–563.

    Article  PubMed  CAS  Google Scholar 

  41. Chen, X., and Berg, H. C. (2000) Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys. J. 78, 1036–1041.

    Article  PubMed  CAS  Google Scholar 

  42. Berg, H. C. (1976) Does the flagellar rotary motor step? in Cold Spring Harbor Conferences on Cell Proliferation, Vol. 3 (Goldman, R., Pollard, T., and Rosenbaum, J., eds.) Cold Spring Harbor Press, NY, pp. A47–A56.

    Google Scholar 

  43. Berg, H. C., and Block, S. M. (1984) A miniature flow cell designed for rapid exchange of media under high-power microscope objectives. J. Gen. Microbiol. 130, 2915–2920.

    PubMed  CAS  Google Scholar 

  44. Block, S. M., Segall, J. E., and Berg, H. C. (1983) Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154, 312–323.

    PubMed  CAS  Google Scholar 

  45. Block, S. M., and Berg, H. C. (1984) Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309, 470–472.

    Article  PubMed  CAS  Google Scholar 

  46. Gründling, A., Manson, M. D., and Young, R. (2001) Holins kill without warning. Proc. Natl. Acad. Sci. USA 98, 9348–9352.

    Article  PubMed  Google Scholar 

  47. Stroock, A. D., Dertinger, S. K., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M. (2002) Chaotic mixer for microchannels. Science 295, 647–651.

    Article  PubMed  CAS  Google Scholar 

  48. Campbell, K., and Groisman, A. (2007) Generation of complex concentration profiles in microchannels in a logarithmically small number of steps. Lab Chip 7, 264–272.

    Article  PubMed  CAS  Google Scholar 

  49. Walker, G. M., Monteiro-Riviere, N., Rouse, J., and O’Neill, A. T. (2007) A linear dilution microfluidic device for cytotoxicity assays. Lab Chip 7, 226–232.

    Article  PubMed  CAS  Google Scholar 

  50. Keenan, T. M., and Folch, A. (2008) Biomolecular gradients in cell culture systems. Lab Chip 8, 34–57.

    Article  PubMed  CAS  Google Scholar 

  51. Mao, H., Cremer, P. S., and Manson, M. D. (2003) A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 100, 5449–5454.

    Article  PubMed  CAS  Google Scholar 

  52. Saadi, W., Rhee, S. W., Lin, F., Vahidi, D., Chung, B. G., and Jeon, N. L. (2007) Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9, 627–635.

    Article  PubMed  Google Scholar 

  53. Lanning, L. M., Ford, R. M., and Long, T. (2008) Bacterial chemotaxis transverse to axial flow in a microfluidic channel. Biotechnol. Bioeng. 100, 653–663.

    Article  PubMed  CAS  Google Scholar 

  54. Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E., and Polz, M. F. (2008) Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl. Acad. Sci. USA 105, 4209–4214.

    Article  PubMed  CAS  Google Scholar 

  55. Parkinson, J. S., and Houts, S. E. (1982) Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions. J. Bacteriol. 151, 106–113.

    PubMed  CAS  Google Scholar 

  56. Hansen, M. C., Palmer, R. J., Jr., Udsen, C., White, D. C., and Molin, S. (2001) Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 147, 1383–1391.

    PubMed  CAS  Google Scholar 

  57. Yu, H. S., and Alam, M. (1997) An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol. Lett. 156, 265269.

    Article  PubMed  CAS  Google Scholar 

  58. Lin, F., Saadi, W., Rhee, S. W., Wang, S. J., Mittal, S., and Jeon, N. L. (2004) Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab Chip 4, 164167.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Chris Adase for help with constructing strains used in the microfluidic experiments. Howard Berg generously read an early draft of the chapter and made many very helpful comments and corrections. Lilia Z. K. Bartoszek did a final thorough proofreading of the manuscript before submission. This work was supported in part by funds from the Texas Engineering Experiment Station to Arul Jayaraman.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Englert, D.L., Jayaraman, A., Manson, M.D. (2009). Microfluidic Techniques for the Analysis of Bacterial Chemotaxis. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology™, vol 571. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-198-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-198-1_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-197-4

  • Online ISBN: 978-1-60761-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics