Skip to main content

miRNAs: From Biogenesis to Networks

  • Protocol
  • First Online:
Protein Networks and Pathway Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 563))

Abstract

In eukaryotes, besides alternative splicing and promoter regulation of “classical” genes, there is also another level of genetic regulation based on non-coding RNAs (ncRNAs). The most famous group of ncRNAs is microRNAs, probably the biggest number of genome regulators. Here, we summarize the knowledge that has been accumulated about the microRNA field, focusing our attention on brief history, biogenesis, regulated mechanism, computational methods of miRNA finding and miRNA target sites, miRNAs and diseases, and miRNAs and network analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    PubMed  CAS  Google Scholar 

  2. Mattick, J. S. and Makunin, I. V. Non-coding RNA. Hum Mol Genet 15 Spec No. 1, R17–29 (2006).

    Google Scholar 

  3. Taft, R. J., Pheasant, M. and Mattick, J. S. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29, 288–99 (2007).

    PubMed  CAS  Google Scholar 

  4. Costa, F. F. Non-coding RNAs: lost in translation? Gene 386, 1–10 (2007).

    PubMed  CAS  Google Scholar 

  5. Mattick, J. S. RNA regulation: a new genetics? Nat Rev Genet 5, 316–23 (2004).

    PubMed  CAS  Google Scholar 

  6. Harfe, B. D. MicroRNAs in vertebrate development. Curr Opin Genet Dev 15, 410–5 (2005).

    PubMed  CAS  Google Scholar 

  7. Lewis, B. P., Burge, C. B. and Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    PubMed  CAS  Google Scholar 

  8. Xi, Y., Shalgi, R., Fodstad, O., Pilpel, Y. and Ju, J. Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 12, 2014–24 (2006).

    PubMed  CAS  Google Scholar 

  9. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–45 (2005).

    PubMed  CAS  Google Scholar 

  10. Chen, C. Z., Li, L., Lodish, H. F. and Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–6 (2004).

    PubMed  CAS  Google Scholar 

  11. Cheng, A. M., Byrom, M. W., Shelton, J. and Ford, L. P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33, 1290–7 (2005).

    PubMed  CAS  Google Scholar 

  12. Karp, X. and Ambros, V. Developmental biology. Encountering microRNAs in cell fate signaling. Science 310, 1288–9 (2005).

    PubMed  CAS  Google Scholar 

  13. Poy, M. N. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–30 (2004).

    PubMed  CAS  Google Scholar 

  14. Xu, P., Guo, M. and Hay, B. A. MicroRNAs and the regulation of cell death. Trends Genet 20, 617–24 (2004).

    PubMed  CAS  Google Scholar 

  15. Chalfie, M., Horvitz, H. R. and Sulston, J. E. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24, 59–69 (1981).

    PubMed  CAS  Google Scholar 

  16. Lee, R. C., Feinbaum, R. L. and Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–54 (1993).

    PubMed  CAS  Google Scholar 

  17. Wightman, B., Ha, I. and Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–62 (1993).

    PubMed  CAS  Google Scholar 

  18. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–9 (2000).

    PubMed  CAS  Google Scholar 

  19. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–6 (2000).

    PubMed  CAS  Google Scholar 

  20. Kim, V. N. and Nam, J. W. Genomics of microRNA. Trends Genet 22, 165–73 (2006).

    PubMed  CAS  Google Scholar 

  21. Berezikov, E. et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21–4 (2005).

    PubMed  CAS  Google Scholar 

  22. Cai, X., Hagedorn, C. H. and Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–66 (2004).

    PubMed  CAS  Google Scholar 

  23. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051–60 (2004).

    PubMed  CAS  Google Scholar 

  24. Lee, Y., Jeon, K., Lee, J. T., Kim, S. and Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21, 4663–70 (2002).

    PubMed  CAS  Google Scholar 

  25. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. and Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–5 (2004).

    PubMed  CAS  Google Scholar 

  26. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–40 (2004).

    PubMed  CAS  Google Scholar 

  27. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18, 3016–27 (2004).

    PubMed  CAS  Google Scholar 

  28. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–9 (2003).

    PubMed  CAS  Google Scholar 

  29. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901 (2006).

    PubMed  CAS  Google Scholar 

  30. Fukuda, T. et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9, 604–11 (2007).

    PubMed  CAS  Google Scholar 

  31. Guil, S. and Caceres, J. F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14, 591–6 (2007).

    PubMed  CAS  Google Scholar 

  32. Zeng, Y. and Cullen, B. R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32, 4776–85 (2004).

    PubMed  CAS  Google Scholar 

  33. Bohnsack, M. T., Czaplinski, K. and Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–91 (2004).

    PubMed  CAS  Google Scholar 

  34. Shibata, S. et al. Exportin-5 orthologues are functionally divergent among species. Nucleic Acids Res 34, 4711–21 (2006).

    PubMed  CAS  Google Scholar 

  35. Yi, R., Qin, Y., Macara, I. G. and Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011–6 (2003).

    PubMed  CAS  Google Scholar 

  36. Forstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3, e236 (2005).

    PubMed  Google Scholar 

  37. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–97 (2004).

    PubMed  CAS  Google Scholar 

  38. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. and Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    PubMed  CAS  Google Scholar 

  39. Brennecke, J., Stark, A., Russell, R. B. and Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol 3, e85 (2005).

    PubMed  Google Scholar 

  40. Doench, J. G. and Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev 18, 504–11 (2004).

    PubMed  CAS  Google Scholar 

  41. Kiriakidou, M. et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18, 1165–78 (2004).

    PubMed  CAS  Google Scholar 

  42. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. and Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–98 (2003).

    PubMed  CAS  Google Scholar 

  43. Rajewsky, N. and Socci, N. D. Computational identification of microRNA targets. Dev Biol 267, 529–35 (2004).

    PubMed  CAS  Google Scholar 

  44. Krek, A. et al. Combinatorial microRNA target predictions. Nat Genet 37, 495–500 (2005).

    PubMed  CAS  Google Scholar 

  45. Saetrom, P. et al. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35, 2333–42 (2007).

    PubMed  CAS  Google Scholar 

  46. Zhang, B., Pan, X., Cobb, G. P. and Anderson, T. A. microRNAs as oncogenes and tumor suppressors. Dev Biol 302, 1–12 (2007).

    PubMed  CAS  Google Scholar 

  47. Olsen, P. H. and Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216, 671–80 (1999).

    PubMed  CAS  Google Scholar 

  48. Petersen, C. P., Bordeleau, M. E., Pelletier, J. and Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21, 533–42 (2006).

    PubMed  CAS  Google Scholar 

  49. Maroney, P. A., Yu, Y., Fisher, J. and Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13, 1102–7 (2006).

    PubMed  CAS  Google Scholar 

  50. Humphreys, D. T., Westman, B. J., Martin, D. I. and Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 102, 16961–6 (2005).

    PubMed  CAS  Google Scholar 

  51. Pillai, R. S. et al. Inhibition of translational initiation by let-7 microRNA in human cells. Science 309, 1573–6 (2005).

    PubMed  CAS  Google Scholar 

  52. Kiriakidou, M. et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141–51 (2007).

    PubMed  CAS  Google Scholar 

  53. Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764–7 (2007).

    PubMed  CAS  Google Scholar 

  54. Thermann, R. and Hentze, M. W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447, 875–8 (2007).

    PubMed  CAS  Google Scholar 

  55. Wakiyama, M., Takimoto, K., Ohara, O. and Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev 21, 1857–62 (2007).

    PubMed  CAS  Google Scholar 

  56. Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–63 (2005).

    PubMed  CAS  Google Scholar 

  57. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. and Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–24 (2006).

    PubMed  CAS  Google Scholar 

  58. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20, 1885–98 (2006).

    PubMed  CAS  Google Scholar 

  59. Grad, Y. et al. Computational and experimental identification of C. elegans microRNAs. Mol Cell 11, 1253–63 (2003).

    PubMed  CAS  Google Scholar 

  60. Miranda, K. C. et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–17 (2006).

    PubMed  CAS  Google Scholar 

  61. Lai, E. C., Tomancak, P., Williams, R. W. and Rubin, G. M. Computational identification of Drosophila microRNA genes. Genome Biol 4, R42 (2003).

    PubMed  Google Scholar 

  62. Wang, X. et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics 21, 3610–4 (2005).

    PubMed  CAS  Google Scholar 

  63. Zhang, B. H., Pan, X. P., Wang, Q. L., Cobb, G. P. and Anderson, T. A. Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15, 336–60 (2005).

    PubMed  Google Scholar 

  64. Hofacker, I. L. Vienna RNA secondary structure server. Nucleic Acids Res 31, 3429–31 (2003).

    PubMed  CAS  Google Scholar 

  65. Bentwich, I. et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37, 766–70 (2005).

    PubMed  CAS  Google Scholar 

  66. Bonnet, E., Wuyts, J., Rouze, P. and Van de Peer, Y. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci U S A 101, 11511–6 (2004).

    PubMed  CAS  Google Scholar 

  67. Bonnet, E., Wuyts, J., Rouze, P. and Van de Peer, Y. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20, 2911–7 (2004).

    PubMed  CAS  Google Scholar 

  68. Lim, L. P. et al. The microRNAs of Caenorhabditis elegans. Genes Dev 17, 991–1008 (2003).

    PubMed  CAS  Google Scholar 

  69. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. and Bartel, D. P. Vertebrate microRNA genes. Science 299, 1540 (2003).

    PubMed  CAS  Google Scholar 

  70. Pang, K. C., Frith, M. C. and Mattick, J. S. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 22, 1–5 (2006).

    PubMed  CAS  Google Scholar 

  71. Adai, A. et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15, 78–91 (2005).

    PubMed  CAS  Google Scholar 

  72. Lindow, M. and Krogh, A. Computational evidence for hundreds of non-conserved plant microRNAs. BMC Genomics 6, 119 (2005).

    PubMed  Google Scholar 

  73. Smalheiser, N. R. and Torvik, V. I. Mammalian microRNAs derived from genomic repeats. Trends Genet 21, 322–6 (2005).

    PubMed  CAS  Google Scholar 

  74. Wernersson, R. et al. Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6, 70 (2005).

    PubMed  Google Scholar 

  75. Dezulian, T., Remmert, M., Palatnik, J. F., Weigel, D. and Huson, D. H. Identification of plant microRNA homologs. Bioinformatics 22, 359–60 (2006).

    PubMed  CAS  Google Scholar 

  76. Jones-Rhoades, M. W. and Bartel, D. P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14, 787–99 (2004).

    PubMed  CAS  Google Scholar 

  77. Xue, C. et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6, 310 (2005).

    PubMed  Google Scholar 

  78. Hertel, J. and Stadler, P. F. Hairpins in a haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 22, e197–202 (2006).

    PubMed  CAS  Google Scholar 

  79. Washietl, S., Hofacker, I. L. and Stadler, P. F. Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 102, 2454–9 (2005).

    PubMed  CAS  Google Scholar 

  80. Havgaard, J. H., Lyngso, R. B. and Gorodkin, J. The FOLDALIGN web server for pairwise structural RNA alignment and mutual motif search. Nucleic Acids Res 33, W650–3 (2005).

    PubMed  CAS  Google Scholar 

  81. Torarinsson, E., Sawera, M., Havgaard, J. H., Fredholm, M. and Gorodkin, J. Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. Genome Res 16, 885–9 (2006).

    PubMed  CAS  Google Scholar 

  82. Pedersen, J. S. et al. Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput Biol 2, e33 (2006).

    PubMed  CAS  Google Scholar 

  83. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. and Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res 14, 1902–10 (2004).

    PubMed  CAS  Google Scholar 

  84. Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–21 (2005).

    PubMed  CAS  Google Scholar 

  85. Lai, E. C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30, 363–4 (2002).

    PubMed  CAS  Google Scholar 

  86. Enright, A. J. et al. MicroRNA targets in Drosophila. Genome Biol 5, R1 (2003).

    PubMed  Google Scholar 

  87. John, B. et al. Human microRNA targets. PLoS Biol 2, e363 (2004).

    PubMed  Google Scholar 

  88. Chan, C. S., Elemento, O. and Tavazoie, S. Revealing posttranscriptional regulatory elements through network-level conservation. PLoS Comput Biol 1, e69 (2005).

    PubMed  Google Scholar 

  89. Saetrom, O., Snove, O., Jr. and Saetrom, P. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 11, 995–1003 (2005).

    PubMed  CAS  Google Scholar 

  90. Rusinov, V., Baev, V., Minkov, I. N. and Tabler, M. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 33, W696–700 (2005).

    PubMed  CAS  Google Scholar 

  91. Kim, S. K., Nam, J. W., Rhee, J. K., Lee, W. J. and Zhang, B. T. miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 7, 411 (2006).

    PubMed  Google Scholar 

  92. Burgler, C. and Macdonald, P. M. Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method. BMC Genomics 6, 88 (2005).

    PubMed  Google Scholar 

  93. Eletto, D. et al. Inhibition of SNAP25 expression by HIV-1 Tat involves the activity of mir-128a. J Cell Physiol 216, 764–70 (2008).

    PubMed  CAS  Google Scholar 

  94. Wang, X. and Wang, X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 34, 1646–52 (2006).

    PubMed  CAS  Google Scholar 

  95. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101, 2999–3004 (2004).

    PubMed  CAS  Google Scholar 

  96. Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99, 15524–9 (2002).

    PubMed  CAS  Google Scholar 

  97. Calin, G. A. et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353, 1793–801 (2005).

    PubMed  CAS  Google Scholar 

  98. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–98 (2006).

    PubMed  CAS  Google Scholar 

  99. Cummins, J. M. et al. The colorectal microRNAome. Proc Natl Acad Sci U S A 103, 3687–92 (2006).

    PubMed  CAS  Google Scholar 

  100. Metzler, M., Wilda, M., Busch, K., Viehmann, S. and Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39, 167–9 (2004).

    PubMed  CAS  Google Scholar 

  101. Chan, J. A., Krichevsky, A. M. and Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65, 6029–33 (2005).

    PubMed  CAS  Google Scholar 

  102. Ciafre, S. A. et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334, 1351–8 (2005).

    PubMed  CAS  Google Scholar 

  103. Murakami, Y. et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25, 2537–45 (2006).

    PubMed  CAS  Google Scholar 

  104. He, H. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 102, 19075–80 (2005).

    PubMed  CAS  Google Scholar 

  105. Bottoni, A. et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204, 280–5 (2005).

    PubMed  CAS  Google Scholar 

  106. Roldo, C. et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24, 4677–84 (2006).

    PubMed  CAS  Google Scholar 

  107. Iorio, M. V. et al. MicroRNA signatures in human ovarian cancer. Cancer Res 67, 8699–707 (2007).

    PubMed  CAS  Google Scholar 

  108. Musiyenko, A., Bitko, V. and Barik, S. Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells. J Mol Med 86, 313–22 (2008).

    PubMed  CAS  Google Scholar 

  109. Gottardo, F. et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25, 387–92 (2007).

    PubMed  CAS  Google Scholar 

  110. Dalmay, T. and Edwards, D. R. MicroRNAs and the hallmarks of cancer. Oncogene 25, 6170–5 (2006).

    PubMed  CAS  Google Scholar 

  111. Lukiw, W. J. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 18, 297–300 (2007).

    PubMed  CAS  Google Scholar 

  112. Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 13, 613–8 (2007).

    PubMed  CAS  Google Scholar 

  113. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. and Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–81 (2005).

    PubMed  CAS  Google Scholar 

  114. Kim, J. et al. A microRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220–4 (2007).

    PubMed  CAS  Google Scholar 

  115. Burmistrova, O. A. et al. MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry (Mosc) 72, 578–82 (2007).

    CAS  Google Scholar 

  116. Lecellier, C. H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–60 (2005).

    PubMed  CAS  Google Scholar 

  117. Sonkoly, E. et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2, e610 (2007).

    PubMed  Google Scholar 

  118. Abelson, J. F. et al. Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310, 317–20 (2005).

    PubMed  CAS  Google Scholar 

  119. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33, D121–4 (2005).

    PubMed  CAS  Google Scholar 

  120. Cui, Q., Yu, Z., Purisima, E. O. and Wang, E. Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2, 46 (2006).

    PubMed  Google Scholar 

  121. Cui, Q., Yu, Z., Pan, Y., Purisima, E. O. and Wang, E. MicroRNAs preferentially target the genes with high transcriptional regulation complexity. Biochem Biophys Res Commun 352, 733–8 (2007).

    PubMed  CAS  Google Scholar 

  122. Liang, H. and Li, W. H. MicroRNA regulation of human protein–protein interaction network. RNA 13, 1402–8 (2007).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all colleagues who have done studies in this field. We apologize to the colleagues whose work in this rapidly changing field was not directly cited in this chapter due to space limitations and timing. G.R. acknowledges the members of GeneGo Inc. (Drs Laura Brovold, Julie Bryant, John Metz, and Yuri Nikolsky) for their useful assistance and invaluable time. This work is supported by NIH grants (A.G.) and the Sbarro Health Research Organization (A.G. and G.R.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Russo, G., Giordano, A. (2009). miRNAs: From Biogenesis to Networks. In: Nikolsky, Y., Bryant, J. (eds) Protein Networks and Pathway Analysis. Methods in Molecular Biology, vol 563. Humana Press. https://doi.org/10.1007/978-1-60761-175-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-175-2_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-174-5

  • Online ISBN: 978-1-60761-175-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics