Skip to main content

Pathway and Network Analysis with High-Density Allelic Association Data

  • Protocol
  • First Online:
Protein Networks and Pathway Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 563))

Abstract

Network and pathway analysis tools are traditionally used to interrogate gene expression data in order to understand the biological processes affected by a particular manipulation or disease/condition of interest. A systems-level understanding of the biological processes affected in particular disease states can allow one to identify candidates not only for pharmaceutical intervention but also for potential prognostic and diagnostic markers for the disease. However, network and pathway analyses are currently underutilized in the interpretation of large-scale genetic association study results. While simple monogenic, overtly Mendelian diseases are easily understood in the context of a single genetic aberration, the vast majority of diseases follow more complex patterns of inheritance and are influenced by a large number of genes and environmental stimuli. Genetic association studies investigating complex diseases that exploit network and pathway analysis tools can shed light on the genetic networks affected by particular genetic variations and sequence polymorphisms, just as gene expression studies can reveal genes dysregulated in a particular disease state. In this chapter, we describe the steps required to undertake network analysis of large-scale genetic association data – in particular single nucleotide polymorphism (SNP)-based genetic association data – in terms of data organization/preparation, SNP weighting schemes, and pathway analysis methods. We provide two illustrative examples that demonstrate the application of this approach: one involving the analysis of cancer tumor resequencing studies and another involving a genome-wide association study (GWAS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallée C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe’er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Altshuler D, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Tsunoda T, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Zeng C, Zhao H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Wheeler DA, Yakub I, Gabriel SB, Onofrio RC, Richter DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler D, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L’Archevêque P, Bellemare G, Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature. 449(7164), 851–861.

    Article  PubMed  CAS  Google Scholar 

  2. Couzin J, Kaiser J (2007) Genome-wide association. Closing the net on common disease genes. Science. 316(5826), 820–2. Erratum in: Science. 317(5836), 320.

    Article  PubMed  CAS  Google Scholar 

  3. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 81, 559–575.

    Article  PubMed  CAS  Google Scholar 

  4. Futreal PA, Kasprzyk A, Birney E, Mullikin JC, Wooster R, Stratton MR (2001) Cancer and genomics. Nature. 409, 850–852.

    Article  PubMed  CAS  Google Scholar 

  5. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al. (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature. 437, 1173–1178.

    Article  PubMed  CAS  Google Scholar 

  6. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 313, 1929–1935.

    Article  PubMed  CAS  Google Scholar 

  7. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B, Gandhi TK, Chandrika KN, Deshpande N (2004) Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 32, D497–D501.

    Article  PubMed  CAS  Google Scholar 

  8. Gilbert D (2005) Biomolecular interaction network database. Brief Bioinform. 6, 194–198.

    Article  PubMed  CAS  Google Scholar 

  9. Ekins S, Nikolsky Y, Bugrim A, Kirillov E, Nikolskaya T (2007). Pathway mapping tools for analysis of high content data. Methods Mol Biol. 356, 319–350.

    PubMed  CAS  Google Scholar 

  10. Kwoh CK, Ng PY (2007) Network analysis approach for biology. Cell Mol Life Sci. 64, 1739–1751.

    Article  PubMed  CAS  Google Scholar 

  11. Ekins S, Bugrim A, Nikolsky Y, Nikolskaya T (2005) Systems biology: applications in drug discovery. In Drug Discovery Handbook (Gad SC, ed.), Wiley, New York, pp. 123–183.

    Chapter  Google Scholar 

  12. Verducci JS, Melfi VF, Lin S, Wang Z, Roy S, Sen CK (2006) Microarray analysis of gene expression: considerations in data mining and statistical treatment. Physiol Genomics. 25, 355–363.

    Article  PubMed  CAS  Google Scholar 

  13. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, et al. (2007) Patterns of somatic mutation in human cancer genomes. Nature. 446, 153–158.

    Article  PubMed  CAS  Google Scholar 

  14. Wellcome Trust Case Control Consortium. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. (2007) Nat Genet. 39, 1329–1337.

    Article  Google Scholar 

  15. Torkamani A, Topol EJ, Schork NJ (2008) Pathway analysis of seven common diseases assessed by genome-wide association. Genomics. Nov;92(5):265–272.

    Google Scholar 

  16. Torkamani A, Schork NJ (2007) Accurate prediction of deleterious protein kinase polymorphisms. Bioinformatics. Nov 1;23(21):2918–2925.

    Google Scholar 

  17. Ng PC, Henikoff S (2002) Accounting for human polymorphisms predicted to affect protein function. Genome Res. 12, 436–446.

    Article  PubMed  CAS  Google Scholar 

  18. ENCODE Project Consortium, et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 447, 799–816.

    Article  Google Scholar 

  19. Nikiforov YE (2004) Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol. 15, 319–327.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Torkamani, A., Schork, N.J. (2009). Pathway and Network Analysis with High-Density Allelic Association Data. In: Nikolsky, Y., Bryant, J. (eds) Protein Networks and Pathway Analysis. Methods in Molecular Biology, vol 563. Humana Press. https://doi.org/10.1007/978-1-60761-175-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-175-2_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-174-5

  • Online ISBN: 978-1-60761-175-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics