Skip to main content

High-Throughput siRNA Screening as a Method of Perturbation of Biological Systems and Identification of Targeted Pathways Coupled with Compound Screening

  • Protocol
  • First Online:
Protein Networks and Pathway Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 563))

Abstract

High-throughput RNA interference (HT-RNAi) is a powerful research tool for parallel, ‘genome-wide’, targeted knockdown of specific gene products. Such perturbation of gene product expression allows for the systematic query of gene function. The phenotypic results can be monitored by assaying for specific alterations in molecular and cellular endpoints, such as promoter activation, cell proliferation and survival. RNAi profiling may also be coupled with drug screening to identify molecular correlates of drug response. As with other genomic-scale data, methods of data analysis are required to handle the unique aspects of data normalization and statistical processing. In addition, novel techniques or knowledge-mining strategies are required to extract useful biological information from HT-RNAi data. Knowledge-mining strategies involve the novel application of bioinformatic tools and expert curation to provide biological context to genomic-scale data such as that generated from HT-RNAi data. Pathway-based tools, whether text-mining based or manually curated, serve an essential role in knowledge mining. These tools can be applied during all steps of HT-RNAi screen experiments including pre-screen knowledge gathering, assay development and hit confirmation and validation. Most importantly, pathway tools allow the interrogation of HT-RNAi data to identify and prioritize pathway-based biological information as a result of specific loss of gene function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  2. Kennerdell, J.R. and Carthew, R.W. (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 95, 1017–1026.

    Article  PubMed  CAS  Google Scholar 

  3. Misquitta, L. and Paterson, B.M. (1999) Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc Natl Acad Sci U S A, 96, 1451–1456.

    Article  PubMed  CAS  Google Scholar 

  4. Caplen, N.J., Parrish, S., Imani, F., Fire, A. and Morgan, R.A. (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A, 98, 9742–9747.

    Article  PubMed  CAS  Google Scholar 

  5. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  6. Elbashir, S.M., Lendeckel, W. and Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev, 15, 188–200.

    Article  PubMed  CAS  Google Scholar 

  7. Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R. and Hannon, G.J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 293, 1146–1150.

    Article  PubMed  CAS  Google Scholar 

  8. McManus, M.T. and Sharp, P.A. (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 3, 737–747.

    Article  PubMed  CAS  Google Scholar 

  9. Aza-Blanc, P., Cooper, C.L., Wagner, K., Batalov, S., Deveraux, Q.L. and Cooke, M.P. (2003) Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell, 12, 627–637.

    Article  PubMed  CAS  Google Scholar 

  10. Berns, K., Hijmans, E.M., Mullenders, J., Brummelkamp, T.R., Velds, A., Heimerikx, M., Kerkhoven, R.M., Madiredjo, M., Nijkamp, W., Weigelt, B. et al. (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 428, 431–437.

    Article  PubMed  CAS  Google Scholar 

  11. Brummelkamp, T.R., Fabius, A.W., Mullenders, J., Madiredjo, M., Velds, A., Kerkhoven, R.M., Bernards, R. and Beijersbergen, R.L. (2006) An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol, 2, 202–206.

    Article  PubMed  CAS  Google Scholar 

  12. Chanda, S.K., White, S., Orth, A.P., Reisdorph, R., Miraglia, L., Thomas, R.S., DeJesus, P., Mason, D.E., Huang, Q., Vega, R. et al. (2003) Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc Natl Acad Sci U S A, 100, 12153–12158.

    Article  PubMed  CAS  Google Scholar 

  13. Paddison, P.J., Silva, J.M., Conklin, D.S., Schlabach, M., Li, M., Aruleba, S., Balija, V., O’Shaughnessy, A., Gnoj, L., Scobie, K. et al. (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature, 428, 427–431.

    Article  PubMed  CAS  Google Scholar 

  14. Rines, D.R., Gomez-Ferreria, M.A., Zhou, Y., Dejesus, P., Grob, S., Batalov, S., Labow, M., Huesken, D., Mickanin, C., Hall, J. et al. (2008) Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells. Genome Biol, 9, R44.

    Article  PubMed  Google Scholar 

  15. Brummelkamp, T.R., Berns, K., Hijmans, E.M., Mullenders, J., Fabius, A., Heimerikx, M., Velds, A., Kerkhoven, R.M., Madiredjo, M., Bernards, R. et al. (2004) Functional identification of cancer-relevant genes through large-scale RNA interference screens in mammalian cells. Cold Spring Harb Symp Quant Biol, 69, 439–445.

    Article  PubMed  CAS  Google Scholar 

  16. Brummelkamp, T.R., Nijman, S.M., Dirac, A.M. and Bernards, R. (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature, 424, 797–801.

    Article  PubMed  CAS  Google Scholar 

  17. MacKeigan, J.P., Murphy, L.O. and Blenis, J. (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol, 7, 591–600.

    Article  PubMed  CAS  Google Scholar 

  18. Schlabach, M.R., Luo, J., Solimini, N.L., Hu, G., Xu, Q., Li, M.Z., Zhao, Z., Smogorzewska, A., Sowa, M.E., Ang, X.L. et al. (2008) Cancer proliferation gene discovery through functional genomics. Science, 319, 620–624.

    Article  PubMed  CAS  Google Scholar 

  19. Silva, J.M., Marran, K., Parker, J.S., Silva, J., Golding, M., Schlabach, M.R., Elledge, S.J., Hannon, G.J. and Chang, K. (2008) Profiling essential genes in human mammary cells by multiplex RNAi screening. Science, 319, 617–620.

    Article  PubMed  CAS  Google Scholar 

  20. Iorns, E., Lord, C.J., Turner, N. and Ashworth, A. (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov, 6, 556–568.

    Article  PubMed  CAS  Google Scholar 

  21. Whitehurst, A.W., Bodemann, B.O., Cardenas, J., Ferguson, D., Girard, L., Peyton, M., Minna, J.D., Michnoff, C., Hao, W., Roth, M.G. et al. (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature, 446, 815–819.

    Article  PubMed  CAS  Google Scholar 

  22. Caldwell, J.S. (2007) Cancer cell-based genomic and small molecule screens. Adv Cancer Res, 96, 145–173.

    Article  PubMed  CAS  Google Scholar 

  23. Echeverri, C.J., Beachy, P.A., Baum, B., Boutros, M., Buchholz, F., Chanda, S.K., Downward, J., Ellenberg, J., Fraser, A.G., Hacohen, N. et al. (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods, 3, 777–779.

    Article  PubMed  CAS  Google Scholar 

  24. Echeverri, C.J. and Perrimon, N. (2006) High-throughput RNAi screening in cultured cells: a user’s guide. Nat Rev Genet, 7, 373–384.

    Article  PubMed  CAS  Google Scholar 

  25. Konig, R., Chiang, C.Y., Tu, B.P., Yan, S.F., DeJesus, P.D., Romero, A., Bergauer, T., Orth, A., Krueger, U., Zhou, Y. et al. (2007) A probability-based approach for the analysis of large-scale RNAi screens. Nat Methods, 4, 847–849.

    Article  PubMed  Google Scholar 

  26. Perrimon, N., Friedman, A., Mathey-Prevot, B. and Eggert, U.S. (2007) Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. Drug Discov Today, 12, 28–33.

    Article  PubMed  CAS  Google Scholar 

  27. Draghici, S., Khatri, P., Tarca, A.L., Amin, K., Done, A., Voichita, C., Georgescu, C. and Romero, R. (2007) A systems biology approach for pathway level analysis. Genome Res, 17, 1537–1545.

    Article  PubMed  CAS  Google Scholar 

  28. Draghici, S., Sellamuthu, S. and Khatri, P. (2006) Babel’s tower revisited: a universal resource for cross-referencing across annotation databases. Bioinformatics, 22, 2934–2939.

    Article  PubMed  CAS  Google Scholar 

  29. Mount, D.W. and Pandey, R. (2005) Using bioinformatics and genome analysis for new therapeutic interventions. Mol Cancer Ther, 4, 1636–1643.

    Article  PubMed  CAS  Google Scholar 

  30. Nikolsky, Y., Ekins, S., Nikolskaya, T. and Bugrim, A. (2005) A novel method for generation of signature networks as biomarkers from complex high throughput data. Toxicol Lett, 158, 20–29.

    Article  PubMed  CAS  Google Scholar 

  31. Nikolsky, Y., Nikolskaya, T. and Bugrim, A. (2005) Biological networks and analysis of experimental data in drug discovery. Drug Discov Today, 10, 653–662.

    Article  PubMed  CAS  Google Scholar 

  32. Dunn, D.A. (2002) Mining the human “kinome”. Drug Discov Today, 7, 1121–1123.

    Article  PubMed  Google Scholar 

  33. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. and Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science, 298, 1912–1934.

    Article  PubMed  CAS  Google Scholar 

  34. Hopkins, A.L. and Groom, C.R. (2002) The druggable genome. Nat Rev Drug Discov, 1, 727–730.

    Article  PubMed  CAS  Google Scholar 

  35. Russ, A.P. and Lampel, S. (2005) The druggable genome: an update. Drug Discov Today, 10, 1607–1610.

    Article  PubMed  Google Scholar 

  36. Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 95, 14863–14868.

    Article  PubMed  CAS  Google Scholar 

  37. Ge, H., Liu, Z., Church, G.M. and Vidal, M. (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet, 29, 482–486.

    Article  PubMed  CAS  Google Scholar 

  38. Jansen, R., Greenbaum, D. and Gerstein, M. (2002) Relating whole-genome expression data with protein-protein interactions. Genome Res, 12, 37–46.

    Article  PubMed  CAS  Google Scholar 

  39. Kemmeren, P., van Berkum, N.L., Vilo, J., Bijma, T., Donders, R., Brazma, A. and Holstege, F.C. (2002) Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol Cell, 9, 1133–1143.

    Article  PubMed  CAS  Google Scholar 

  40. Lee, H.K., Hsu, A.K., Sajdak, J., Qin, J. and Pavlidis, P. (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res, 14, 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  41. Obayashi, T., Hayashi, S., Shibaoka, M., Saeki, M., Ohta, H. and Kinoshita, K. (2008) COXPRESdb: a database of coexpressed gene networks in mammals. Nucleic Acids Res, 36, D77–D82.

    Article  PubMed  CAS  Google Scholar 

  42. Chung, N., Zhang, X.D., Kreamer, A., Locco, L., Kuan, P.F., Bartz, S., Linsley, P.S., Ferrer, M. and Strulovici, B. (2008) Median absolute deviation to improve hit selection for genome-scale RNAi screens. J Biomol Screen, 13, 149–158.

    Article  PubMed  CAS  Google Scholar 

  43. Fuchs, F. and Boutros, M. (2006) Cellular phenotyping by RNAi. Brief Funct Genomic Proteomic, 5, 52–56.

    Article  PubMed  CAS  Google Scholar 

  44. Inglese, J., Shamu, C.E. and Guy, R.K. (2007) Reporting data from high-throughput screening of small-molecule libraries. Nat Chem Biol, 3, 438–441.

    Article  PubMed  CAS  Google Scholar 

  45. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L.C., De Moor, B., Marynen, P., Hassan, B. et al. (2006) Gene prioritization through genomic data fusion. Nat Biotechnol, 24, 537–544.

    Article  PubMed  CAS  Google Scholar 

  46. Chen, J., Xu, H., Aronow, B.J. and Jegga, A.G. (2007) Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics, 8, 392.

    Article  PubMed  Google Scholar 

  47. Friend, S.H. and Oliff, A. (1998) Emerging uses for genomic information in drug discovery. N Engl J Med, 338, 125–126.

    Article  PubMed  CAS  Google Scholar 

  48. Hartwell, L.H., Szankasi, P., Roberts, C.J., Murray, A.W. and Friend, S.H. (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science, 278, 1064–1068.

    Article  PubMed  CAS  Google Scholar 

  49. Shoemaker, R.H. (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer, 6, 813–823.

    Article  PubMed  CAS  Google Scholar 

  50. Weinstein, J.N. (2006) Spotlight on molecular profiling: “integromic” analysis of the NCI-60 cancer cell lines. Mol Cancer Ther, 5, 2601–2605.

    Article  PubMed  CAS  Google Scholar 

  51. Bussey, K.J., Chin, K., Lababidi, S., Reimers, M., Reinhold, W.C., Kuo, W.L., Gwadry, F., Ajay, Kouros-Mehr, H., Fridlyand, J. et al. (2006) Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel. Mol Cancer Ther, 5, 853–867.

    Article  PubMed  CAS  Google Scholar 

  52. Scherf, U., Ross, D.T., Waltham, M., Smith, L.H., Lee, J.K., Tanabe, L., Kohn, K.W., Reinhold, W.C., Myers, T.G., Andrews, D.T. et al. (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet, 24, 236–244.

    Article  PubMed  CAS  Google Scholar 

  53. Staunton, J.E., Slonim, D.K., Coller, H.A., Tamayo, P., Angelo, M.J., Park, J., Scherf, U., Lee, J.K., Reinhold, W.O., Weinstein, J.N. et al. (2001) Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A, 98, 10787–10792.

    Article  PubMed  CAS  Google Scholar 

  54. Zhou, Y., Young, J.A., Santrosyan, A., Chen, K., Yan, S.F. and Winzeler, E.A. (2005) In silico gene function prediction using ontology-based pattern identification. Bioinformatics, 21, 1237–1245.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Kiefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kiefer, J., Yin, H.H., Que, Q.Q., Mousses, S. (2009). High-Throughput siRNA Screening as a Method of Perturbation of Biological Systems and Identification of Targeted Pathways Coupled with Compound Screening. In: Nikolsky, Y., Bryant, J. (eds) Protein Networks and Pathway Analysis. Methods in Molecular Biology, vol 563. Humana Press. https://doi.org/10.1007/978-1-60761-175-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-175-2_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-174-5

  • Online ISBN: 978-1-60761-175-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics