Skip to main content

Protein Detection and Quantitation Technologies for Gel-Based Proteome Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 564))

Summary

Numerous protein detection and quantitation methods for gel-based proteomics have been devised that can be classified in three major categories: (1) Universal (or “general”) detection techniques, which include staining with anionic dyes (e.g., Coomassie brilliant blue), reverse (or “negative”) staining with metal cations (e.g., imidazole-zinc), silver staining, fluorescent staining or labeling, and radiolabeling, (2) specific staining methods for the detection of post-translational modifications (e.g., glycosylation or phosphorylation), and (3) differential display techniques for the separation of multiple, covalently tagged samples in a single two-dimensional electrophoresis (2-DE) gel, followed by consecutive and independent visualization of these proteins to minimize methodical variations in spot positions and in protein abundance, to simplify image analysis, as well as to improve protein quantitation by including an internal standard.The most important properties of protein detection methods applied in proteome analysis include high sensitivity (i.e., low detection limit), wide linear dynamic range for quantitative accuracy, reproducibility, cost-efficiency, ease of use, and compatibility with downstream protein identification or characterization technologies, such as mass spectrometry (MS). Regrettably, no single detection method meets all these requirements, albeit fluorescence-based technologies are currently favored for most applications; hence, the major focus of this chapter is on fluorescent-dye-based protein detection and quantitation techniques. Although satisfying results with respect to sensitivity and reproducibility are also obtained by methods based on radioactive labeling of proteins (which is still unsurpassed in terms of sensitivity), radiolabeling is, however, largely impractical for routine proteomic profiling because of the costs and the health and safety concerns associated with handling radioactive compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Görg, A., Weiss, W., and Dunn, M.J. (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665–3685. Review.

    Article  PubMed  Google Scholar 

  2. Patton, W.F. (2002) Detection technologies in proteome analysis. J. Chromatogr. B 771, 3–31. Review.

    Article  CAS  Google Scholar 

  3. Van den Bergh, G., and Arckens, L. (2004) Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr. Opin. Biotech. 15, 38–43. Review.

    Article  PubMed  CAS  Google Scholar 

  4. Miller, I., Crawford, J., and Gianazza, E. (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6, 5385–5408. Review.

    Article  PubMed  CAS  Google Scholar 

  5. Harris, L.R., Churchward, M.A., Butt, R.H., and Coorssen, J.R. (2007) Assessing detection methods for gel-based proteomic analyses. J. Proteome Res. 6, 1418–1425.

    Article  PubMed  CAS  Google Scholar 

  6. Fazekas de St.Groth, S., Webster, R.G., and Datyner, A. (1963) Two new staining procedures for quantitative estimation of proteins on electrophoresis strips. Biochim. Biophys. Acta 71, 377–391.

    Article  PubMed  CAS  Google Scholar 

  7. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262.

    Article  PubMed  CAS  Google Scholar 

  8. Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G.M., Carnemolla, B., Orecchia, P., Zardi, L., and Righetti, P.G. (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25, 1327–1333.

    Article  PubMed  CAS  Google Scholar 

  9. Luo, S., Wehr, N.B., and Levine, R.L. (2006) Quantitation of protein on gels and blots by infrared fluorescence of Coomassie Blue and Fast Green. Anal. Biochem. 350, 233–238.

    Article  PubMed  CAS  Google Scholar 

  10. Fernandez-Patron, C., Castellanos-Serra, L., and Rodriguez, P. (1992) Reverse staining of sodium dodecyl sulfate polyacrylamide gels by imidazole-zinc salts: sensitive detection of unmodified proteins. Biotechniques 12, 564–573.

    PubMed  CAS  Google Scholar 

  11. Castellanos-Serra, L., and Hardy, E. (2006) Negative detection of biomolecules separated in polyacrylamide electrophoresis gels. Nat. Protoc. 1, 1544–1551.

    Article  PubMed  CAS  Google Scholar 

  12. Switzer, R.C., Merril, C.R., and Shifrin, S. (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal. Biochem. 98, 231–237.

    Article  PubMed  CAS  Google Scholar 

  13. Merril, C.R., Goldman, D., Sedman, S.A., and Ebert, M.H. (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211, 1437–1438.

    Article  PubMed  CAS  Google Scholar 

  14. Blum, H., Beier, H., and Gross, H.J. (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99.

    Article  CAS  Google Scholar 

  15. Oakley, B.R., Kirsch, D.R., and Morris, N.R. (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105, 361–363.

    Article  PubMed  CAS  Google Scholar 

  16. Chevallet, M., Luche, S., and Rabilloud, T. (2006) Silver staining of proteins in polyacrylamide gels. Nat. Protoc. 1, 1852–1858.

    Article  PubMed  CAS  Google Scholar 

  17. De Moreno, M.R., Smith, J.F., and Smith, R.V. (1985) Silver staining of proteins in polyacrylamide gels: increased sensitivity through a combined Coomassie Blue-silver stain procedure. Anal. Biochem. 151, 466–470.

    Article  PubMed  CAS  Google Scholar 

  18. Becher, B., Knofel, A.K., and Peters, J. (2006) Time-based analysis of silver-stained proteins in acrylamide gels. Electrophoresis 27, 1867–1873.

    Article  PubMed  CAS  Google Scholar 

  19. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.

    Article  PubMed  CAS  Google Scholar 

  20. Mortz, E., Krogh, T.N., Vorum, H., and Görg, A. (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1, 1359–1363.

    Article  PubMed  CAS  Google Scholar 

  21. Harris, L.R., Churchward, M.A., Butt, R.H., and Coorssen, J.R. (2007) Assessing detection methods for gel-based proteomic analyses. J. Proteome Res. 6, 1418–1425.

    Article  PubMed  CAS  Google Scholar 

  22. Ünlü, M., Morgan, M.E., and Minden, J.S. (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077.

    Article  PubMed  Google Scholar 

  23. Berggren, K.N., Schulenberg, B., Lopez, M.F., Steinberg, T.H., Bogdanova, A., Smejkal, G., Wang, A., and Patton, W.F. (2002) An improved formulation of SYPRO Ruby protein gel stain: comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation. Proteomics 2, 486–498.

    Article  PubMed  CAS  Google Scholar 

  24. Mackintosh, J.A., Choi, H.Y., Bae, S.H., Veal, D.A., Bell, P.J., Ferrari, B.C., Van Dyk, D.D., Verrills, N.M., Paik, Y.K., and Karuso, P. (2003) A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 3, 2273–2288.

    Article  PubMed  CAS  Google Scholar 

  25. Rabilloud, T., Strub, J.M., Luche, S., van Dorsselaer, A., and Lunardi, J. (2001) A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics 1, 699–704.

    Article  PubMed  CAS  Google Scholar 

  26. Lamanda, A., Zahn, A., Röder, D., and Langen, H. (2004) Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocol for a better signal-to-background ratio and improved baseline resolution. Proteomics 4, 599–608.

    Article  PubMed  CAS  Google Scholar 

  27. Reinders, J., and Sickmann, A. (2005) State-of-the-art in phosphoproteomics. Proteomics 5, 4052–4061. Review.

    Article  PubMed  CAS  Google Scholar 

  28. Steinberg, T.H., Agnew, B.J., Gee, K.R., Leung, W.Y., Goodman, T., Schulenberg, B., Hendrickson, J., Beechem, J.M., Haugland, R.P., and Patton, W.F. (2003) Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3, 1128–1244.

    Article  PubMed  CAS  Google Scholar 

  29. Hart, C., Schulenberg, B., Steinberg, T.H., Leung, W.Y., and Patton, W.F. (2003) Detection of glycoproteins in polyacrylamide gels and on electroblots using Pro-Q Emerald 488 dye, a fluorescent periodate Schiff-base stain. Electrophoresis 24, 588–598.

    Article  PubMed  CAS  Google Scholar 

  30. Wu, J., Lenchik, N.J., Pabst, M.J., Solomon, S.S., Shull, J., and Gerling, I.C. (2005) Functional characterization of two-dimensional gel-separated proteins using sequential staining. Electrophoresis 26, 225–237.

    Article  PubMed  CAS  Google Scholar 

  31. Alban, A., David, S.O., Bjorkesten, L., Andersson, C., Sloge, E., Lewis, S., and Currie, I. (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3, 36–44.

    Article  PubMed  CAS  Google Scholar 

  32. Shaw, J., Rowlinson, R., Nickson, J., Stone, T., Sweet, A., Williams, K., and Tonge, R. (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3, 1181–1195.

    Article  PubMed  CAS  Google Scholar 

  33. Lilley, K.S., and Friedman, D.B. (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev. Proteomics 1, 401–409.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Weiss, W., Weiland, F., Görg, A. (2009). Protein Detection and Quantitation Technologies for Gel-Based Proteome Analysis. In: Reinders, J., Sickmann, A. (eds) Proteomics. Methods in Molecular Biology™, vol 564. Humana Press. https://doi.org/10.1007/978-1-60761-157-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-157-8_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-156-1

  • Online ISBN: 978-1-60761-157-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics