Skip to main content

Proteomics Identification of Oxidatively Modified Proteins in Bra

  • Protocol
  • First Online:
Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 564))

Summary

Several studies demonstrated the involvement of free radicals in the pathophysiology of neurodegenerative diseases. Once formed, reactive oxygen species (ROS) can promote multiple forms of oxidative damage, including protein oxidation, and thereby influence the function of a diverse array of cellular processes leading inevitably to neuronal dysfunctions. Protein oxidation can therefore rapidly contribute to oxidative stress by directly affecting cell signaling, cell structure, and enzymatic processes such as metabolism. There are many different modes of inducing protein oxidation including metal-catalyzed oxidation, oxidation-induced cleavage of peptide chain, amino acid oxidation, and the covalent binding of lipid peroxidation products or advanced glycation end proteomics.In this paper we describe the protocol of redox proteomics, a tool to identify post-translational modifications of proteins. We focus our attention on the identification of carbonylated and 4-hydroxy-2-trans-nonenal-bound proteins. In redox proteomics, samples for the identification of protein carbonyls are first derivatized with 2,4-dinitrophenolhydrazine (DNPH) followed by two-dimensional (2D) separation of these proteins based on their isoelectric point and rate of migration. The carbonylated proteins are then detected using 2D Western blot techniques. Similarly, HNE-bound proteins can be detected using the above-mentioned strategy except that the sample does not need to be derivatized. Separated proteins are identified following tryptic digestion, mass spectrometry, and interrogation of appropriate databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 2002; 23(5):655–64.

    Article  PubMed  Google Scholar 

  2. Migliore L, Petrozzi L, Lucetti C, Gambaccini G, Bernardini S, Scarpato R, Trippi F, Barale R, Frenzilli G, Rodilla V, Bonuccelli U. Oxidative damage and cytogenetic analysis in leukocytes of Parkinson’s disease patients. Neurology 2002; 58(12):1809–15.

    PubMed  CAS  Google Scholar 

  3. Pedersen WA, Cashman NR, Mattson MP. The lipid peroxidation product 4-hydroxynonenal impairs glutamate and glucose transport and choline acetyltransferase activity in NSC-19 motor neuron cells. Exp Neurol 1999; 155(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  4. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992; 59(5):1609–23.

    Article  PubMed  CAS  Google Scholar 

  5. Nakamura K, Hori T, Sato N, Sugie K, Kawakami T, Yodoi J. Redox regulation of a src family protein tyrosine kinase p56lck in T cells. Oncogene 1993; 8(11):3133–9.

    PubMed  CAS  Google Scholar 

  6. Staal FJ, Anderson MT, Staal GE, Herzenberg LA, Gitler C. Redox regulation of signal transduction: tyrosine phosphorylation and calcium influx. Proc Natl Acad Sci U S A 1994; 91(9):3619–22.

    Article  PubMed  CAS  Google Scholar 

  7. Dalle-Donne I, Scaloni A, Giustarini D, Cavarra E, Tell G, Lungarella G, Colombo R, Rossi R, Milzani A. Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev 2005; 24(1):55–99.

    Article  PubMed  CAS  Google Scholar 

  8. Stadtman ER. Protein oxidation and aging. Science 1992; 257(5074):1220–4.

    Article  PubMed  CAS  Google Scholar 

  9. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 1997; 10(5):485–94.

    Article  PubMed  CAS  Google Scholar 

  10. Esterbauer H, Zollner H. Methods for determination of aldehydic lipid peroxidation products. Free Radic Biol Med 1989; 7(2):197–203.

    Article  PubMed  CAS  Google Scholar 

  11. Uchida K, Stadtman ER. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction. J Biol Chem 1993; 268(9):6388–93.

    PubMed  CAS  Google Scholar 

  12. Blakeman DP, Ryan TP, Jolly RA, Petry TW. Diquat-dependent protein carbonyl formation. Identification of lipid-dependent and lipid-independent pathways. Biochem Pharmacol 1995; 50(7):929–35.

    Article  PubMed  CAS  Google Scholar 

  13. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991; 11(1):81–128.

    Article  PubMed  CAS  Google Scholar 

  14. Malecki A, Garrido R, Mattson MP, Hennig B, Toborek M. 4-Hydroxynonenal induces oxidative stress and death of cultured spinal cord neurons. J Neurochem 2000; 74(6):2278–87.

    Article  PubMed  CAS  Google Scholar 

  15. Sultana R, Perluigi M, Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: Insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 2006; 8(11-12):2021–37.

    Article  PubMed  CAS  Google Scholar 

  16. Butterfield DA, Reed T, Newman S, Sultana R. Roles of amyloid b-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 2007; 43:658–77.

    Article  PubMed  CAS  Google Scholar 

  17. Butterfield DA. Proteomics: a new approach to investigate oxidative stress in Alzheimer’s disease brain. Brain Res 2004; 1000(1–2):1–7.

    Article  PubMed  CAS  Google Scholar 

  18. Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 2006; 545(1):39–50.

    Article  PubMed  CAS  Google Scholar 

  19. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 2002; 33(4):562–71.

    Article  PubMed  CAS  Google Scholar 

  20. Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 2002; 82(6):1524–32.

    Article  PubMed  CAS  Google Scholar 

  21. Castegna A, Thongboonkerd V, Klein J, Lynn BC, Wang YL, Osaka H, Wada K, Butterfield DA. Proteomic analysis of brain proteins in the gracile axonal dystrophy (gad) mouse, a syndrome that emanates from dysfunctional ubiquitin carboxyl-terminal hydrolase L-1, reveals oxidation of key proteins. J Neurochem 2004; 88(6):1540–6.

    Article  PubMed  CAS  Google Scholar 

  22. Perluigi M, Fai Poon H, Hensley K, Pierce WM, Klein JB, Calabrese V, De Marco C, Butterfield DA. Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice – a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 2005; 38(7):960–8.

    Article  PubMed  CAS  Google Scholar 

  23. Poon HF, Hensley K, Thongboonkerd V, Merchant ML, Lynn BC, Pierce WM, Klein JB, Calabrese V, Butterfield DA. Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice – a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 2005; 39(4):453–62.

    Article  PubMed  CAS  Google Scholar 

  24. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Markesbery WR, Zhou XZ, Lu KP, Butterfield DA. Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: A redox proteomics analysis. Neurobiol Aging 2006; 27(7):918–25.

    Article  PubMed  CAS  Google Scholar 

  25. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA. Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: An approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 2006; 27:1564–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by grants from NIH [AG-10836; AG-05119].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Allan Butterfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sultana, R., Perluigi, M., Allan Butterfield, D. (2009). Proteomics Identification of Oxidatively Modified Proteins in Bra. In: Reinders, J., Sickmann, A. (eds) Proteomics. Methods in Molecular Biology™, vol 564. Humana Press. https://doi.org/10.1007/978-1-60761-157-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-157-8_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-156-1

  • Online ISBN: 978-1-60761-157-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics