Skip to main content

iTRAQ-Labeling of In-Gel Digested Proteins for Relative Quantification

  • Protocol
  • First Online:
Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 564))

Summary

In addition to standard MS-based protein identification, quantification of proteins by mass spectrometry (MS) is rapidly gaining acceptance in proteomic studies. MS-based quantification involves either the incorporation of stable isotopes or can be performed label-free. Recently, more attention has been devoted to label-free quantification; however, this approach has not been fully established among the proteomic community yet. More common is still the introduction of stable isotopes, which can be done by metabolic (e.g., SILAC) or by chemical (e.g., ICAT, iTRAQ, etc.) labeling. Here, we present an overall quantification strategy for chemical labeling of in-gel digested proteins using iTRAQ reagents. This includes (1) protein separation by gel electrophoresis, (2) excision of protein bands, (3) in-gel digestion and extraction of peptides, (4) labeling of peptides, (5) pooling the samples to be compared, (6) LC-MS/MS of labeled peptides, and (7) database search. The presented workflow is well suited for protein samples of moderate complexity (i.e., protein samples of 300–400 components), and it is exemplified by using different amounts of 25S [U4/U6.U5] tri-snRNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ong, S. E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1, 252–62.

    Article  PubMed  CAS  Google Scholar 

  2. Behrens, S. E. and Luhrmann, R. (1991) Immunoaffinity purification of a [U4/U6.U5] tri-snRNP from human cells. Genes Dev 5, 1439–52.

    Article  PubMed  CAS  Google Scholar 

  3. Will, C. L. and Luhrmann, R. (2006) Spliceosome Structure and Function. In: Gesteland, R. F., Cech, J. F., and Atkins, J. F., eds. The RNA World, 3rd Ed., pp. 369-400, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  4. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D. J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004/09/24 Ed., pp. 1154-1169.

    Google Scholar 

  5. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–85.

    Article  PubMed  CAS  Google Scholar 

  6. Klose, J. (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–43.

    PubMed  CAS  Google Scholar 

  7. O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007–21.

    PubMed  Google Scholar 

  8. Schagger, H. and von Jagow, G. (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199, 223–31.

    Article  PubMed  CAS  Google Scholar 

  9. Schagger, H., Aquila, H., and von Jagow, G. (1988) Coomassie blue-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for direct visualization of polypeptides during electrophoresis. Anal Biochem 173, 201–5.

    Article  PubMed  CAS  Google Scholar 

  10. Macfarlane, D. E. (1989) Two dimensional benzyldimethyl-n-hexadecylammonium chloride – sodium dodecyl sulfate preparative polyacrylamide gel electrophoresis: a high capacity high resolution technique for the purification of proteins from complex mixtures. Anal Biochem 176, 457–63.

    Article  PubMed  CAS  Google Scholar 

  11. Hartinger, J., Stenius, K., Hogemann, D., and Jahn, R. (1996) 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal Biochem 240, 126–33.

    Article  PubMed  CAS  Google Scholar 

  12. Washburn, M. P., Wolters, D., and Yates, J. R., 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–47.

    Article  PubMed  CAS  Google Scholar 

  13. Krijgsveld, J., Gauci, S., Dormeyer, W., and Heck, A. J. (2006) In-gel isoelectric focusing of peptides as a tool for improved protein identification. J Proteome Res 5, 1721–30.

    Article  PubMed  CAS  Google Scholar 

  14. Klose, J. (1999) Large-gel 2-D electrophoresis. Methods Mol Biol 112, 147–72.

    PubMed  CAS  Google Scholar 

  15. Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., and Weiss, W. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–53.

    Article  PubMed  CAS  Google Scholar 

  16. Klose, J. and Kobalz, U. (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16, 1034–59.

    Article  PubMed  CAS  Google Scholar 

  17. Kubo, K. (1995) Effect of incubation of solutions of proteins containing dodecyl sulfate on the cleavage of peptide bonds by boiling. Anal Biochem 225, 351–353.

    Article  PubMed  CAS  Google Scholar 

  18. Invitrogen (2003) General information and protocols for using the NuPAGE electrophoresis system. NuPAGE TM Technical Guide.

    Google Scholar 

  19. Blum, H., Beier, H., and Gross, H. J. (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99.

    Article  CAS  Google Scholar 

  20. Westermeier, R. and Marouga, R. (2005) Protein detection methods in proteomics research. Biosci Rep 25, 19–32.

    Article  PubMed  CAS  Google Scholar 

  21. Hu, Y., Malone, J. P., Fagan, A. M., Townsend, R. R., and Holtzman, D. M. (2005) Comparative proteomic analysis of intra- and interindividual variation in human cerebrospinal fluid. Mol Cell Proteomics 4, 2000–09.

    Article  PubMed  CAS  Google Scholar 

  22. Wilson, K. E., Marouga, R., Prime, J. E., Pashby, D. P., Orange, P. R., Crosier, S., Keith, A. B., Lathe, R., Mullins, J., Estibeiro, P., Bergling, H., Hawkins, E., and Morris, C. M. (2005) Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling. Proteomics 5, 3851–58.

    Article  PubMed  CAS  Google Scholar 

  23. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994–99.

    Article  PubMed  CAS  Google Scholar 

  24. Yao, X., Freas, A., Ramirez, J., Demirev, P. A., and Fenselau, C. (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73, 2836–42.

    Article  PubMed  CAS  Google Scholar 

  25. Staes, A., Demol, H., Van Damme, J., Martens, L., Vandekerckhove, J., and Gevaert, K. (2004) Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J Proteome Res 3, 786–91.

    Article  PubMed  CAS  Google Scholar 

  26. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–86.

    Article  PubMed  CAS  Google Scholar 

  27. Old, W. M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K. G., Mendoza, A., Sevinsky, J. R., Resing, K. A., and Ahn, N. G. (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4, 1487–502.

    Google Scholar 

  28. Wiener, M. C., Sachs, J. R., Deyanova, E. G., and Yates, N. A. (2004) Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem 76, 6085–96.

    Article  Google Scholar 

  29. Wu, W. W., Wang, G., Baek, S. J., and Shen, R. F. (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5, 651–58.

    Article  PubMed  CAS  Google Scholar 

  30. Karas, M., Bachmann, D., Bahr, U., and Hillenkamp, F. (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Proc 78, 53–58.

    Article  CAS  Google Scholar 

  31. Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60, 2299–301.

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., and Yoshida, T. (1988) Laser ionization Tome-of-flight mass spectrometry. Rapid Comm Mass Spectrom 2, 151–153.

    Article  CAS  Google Scholar 

  33. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.

    Article  PubMed  CAS  Google Scholar 

  34. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–67.

    Article  PubMed  CAS  Google Scholar 

  35. Elias, J. E., Haas, W., Faherty, B. K., and Gygi, S. P. (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2, 667–75.

    Article  PubMed  CAS  Google Scholar 

  36. Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., and Graham Cooks, R. (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40, 430–43.

    Article  PubMed  CAS  Google Scholar 

  37. Bach, M., Bringmann, P., and Luhrmann, R. (1990) Purification of small nuclear ribonucleoprotein particles with antibodies against modified nucleosides of small nuclear RNAs. Methods Enzymol 181, 232–57.

    Article  PubMed  CAS  Google Scholar 

  38. Bringmann, P., Rinke, J., Appel, B., Reuter, R., and Luhrmann, R. (1983) Purification of snRNPs U1, U2, U4, U5 and U6 with 2,2,7-trimethylguanosine-specific antibody and definition of their constituent proteins reacting with anti-Sm and anti-(U1)RNP antisera. EMBO J 2, 1129–35.

    PubMed  CAS  Google Scholar 

  39. Kastner, B. (1998) Purification and Electron Microscopy of Spliceosomal snRNPs. In: Schenkel, J., ed. RNA Particles, Splicing and Autoimmune Diseases, pp. 95–140, Springer Lab Manual, Springer, Berlin, Heidelberg.

    Google Scholar 

  40. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–54.

    Article  PubMed  CAS  Google Scholar 

  41. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–62.

    Article  PubMed  CAS  Google Scholar 

  42. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68, 850–58.

    Article  PubMed  CAS  Google Scholar 

  43. Shadforth, I. P., Dunkley, T. P., Lilley, K. S., and Bessant, C. (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6, 145.

    Article  PubMed  Google Scholar 

  44. Lin, W. T., Hung, W. N., Yian, Y. H., Wu, K. P., Han, C. L., Chen, Y. R., Chen, Y. J., Sung, T. Y., and Hsu, W. L. (2006) Multi-Q: a fully automated tool for multiplexed protein quantitation. J Proteome Res 5, 2328–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Monika Raabe und Uwe Plessmann for technical assistance and Reinhard Lührmann for providing purified tri-snRNP particles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Urlaub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schmidt, C., Urlaub, H. (2009). iTRAQ-Labeling of In-Gel Digested Proteins for Relative Quantification. In: Reinders, J., Sickmann, A. (eds) Proteomics. Methods in Molecular Biology™, vol 564. Humana Press. https://doi.org/10.1007/978-1-60761-157-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-157-8_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-156-1

  • Online ISBN: 978-1-60761-157-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics